Abstract
Dengue fever (DF) and dengue hemorrhagic fever (DHF) are vector borne disease which is notifiable diseases in Malaysia since 1974. Early notification is essential for control measures as delayed notification will lead to further occurrences of outbreak cases. In this study we identify the number of attributes to be used in determining outbreaks rather than using only case counts. The experiment is conducted using multiple attribute value based on Apriori concept. The outcomes are promising when we can identify more than one attributes showing similar graph in vector-borne diseases outbreaks. Our methods also outperform in term of detection rate, false positive rate and overall performance. We prove through our experiment that more than one attributes can be used to better detect outbreaks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Choy, E.A., Asmahani, A., Mazrura, S.: Perubahan Iklim dan Kesihatan Manusia: Metodologi dan Senario Penyakit Bawaan Vektor (unpublished)
New Strait Time (NST) online, Dengue Alert, http://www.nst.com.my/Current_News/NST/articles/6dent/Article/
Seksyen Penyakit Berjangkit, Bahagian Kawalan Penyakit, Jabatan Kesihatan Awam, Kementerian Kesihatan Malaysia, http://www.moh.gov.my
Agrawal, R., et al.: Mining association rules between sets of items in large databases. J. ACM SIGMOD Record. 22, 207–216 (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)
Zalizah, A.L., Azuraliza, A.B., Abdul-Razak, H.: Mining Multiple Attribute Values for Frequent Itemset Generation in Non-Binary Search Space (2009)
Runge-Ranzinger, S., Horstick, O., Marx, M., Kroeger, A.: What does dengue disease surveillance contribute to predicting and detecting outbreaks and describing trends? J. Tropical Medicine & International Health 13, 1022–1041 (2008)
Barbazan, P., Yoksan, S., Gonzalez, J.P.: Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics. J. Microbes and infection 4, 699–705 (2002)
Talarmin, A., Peneau, C., Dussart, P., Pfaff, F., Courcier, M., de Rocca-Serra, B., Sarthou, J.L.: Surveillance of dengue fever in French Guiana by monitoring the results of negative malaria diagnoses. J. Epidemiology and Infection 125, 189–193 (2000)
Excite, http://www.cdc.gov/excite/classroom/outbreak/objectives.htm
Seng, S.B., Chong, A.K., Moore, A.: Geostatistical modelling, analysis and mapping of epidemiology of Dengue fever in Johor State, Malaysia (2005)
Shmueli, G.: Current and Potential Statistical Methods for Anomaly Detection in Modern Time Series Data: The Case of Biosurveillance. Data Mining Methods for Anomaly Detection (2005)
German, R.R., Armstrong, G., Birkhead, G.S., Horan, J.M., Herrera, G.: Updated guidelines for evaluating public health surveillance systems. MMWR Recomm. Rep. 50, 1–35 (2001)
Watkins, R.E., Eagleson, S., Veenendaal, B., Wright, G., Plant, A.J.: Applying cusum-based methods for the detection of outbreaks of Ross River virus disease in Western Australia. J. BMC Medical Informatics and Decision Making 8, 37 (2008)
Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R., Mostashari, F.: A Space-Time Permutation Scan Statistic for Disease Outbreak Detection. J. Plos Medicine 2, 216 (2005)
Buckeridge, D.L., Burkom, H., Campbell, M., Hogan, W.R., Moore, A.W.: Algorithms for rapid outbreak detection: a research synthesis. Journal of Biomedical Informatics 38, 99–113 (2005)
Hutwagner, L., Browne, T., Seeman, G.M., Fleischauer, A.T.: Comparing aberration detection methods with simulated data. J. Emerging Infectious Diseases 11, 314–316 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Long, Z.A., Abu Bakar, A., Razak Hamdan, A., Sahani, M. (2010). Multiple Attribute Frequent Mining-Based for Dengue Outbreak. In: Cao, L., Feng, Y., Zhong, J. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17316-5_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-17316-5_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17315-8
Online ISBN: 978-3-642-17316-5
eBook Packages: Computer ScienceComputer Science (R0)