Multiple Attribute Frequent Mining-Based for Dengue Outbreak | SpringerLink
Skip to main content

Multiple Attribute Frequent Mining-Based for Dengue Outbreak

  • Conference paper
Advanced Data Mining and Applications (ADMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6440))

Included in the following conference series:

  • 2427 Accesses

Abstract

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are vector borne disease which is notifiable diseases in Malaysia since 1974. Early notification is essential for control measures as delayed notification will lead to further occurrences of outbreak cases. In this study we identify the number of attributes to be used in determining outbreaks rather than using only case counts. The experiment is conducted using multiple attribute value based on Apriori concept. The outcomes are promising when we can identify more than one attributes showing similar graph in vector-borne diseases outbreaks. Our methods also outperform in term of detection rate, false positive rate and overall performance. We prove through our experiment that more than one attributes can be used to better detect outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choy, E.A., Asmahani, A., Mazrura, S.: Perubahan Iklim dan Kesihatan Manusia: Metodologi dan Senario Penyakit Bawaan Vektor (unpublished)

    Google Scholar 

  2. New Strait Time (NST) online, Dengue Alert, http://www.nst.com.my/Current_News/NST/articles/6dent/Article/

  3. Seksyen Penyakit Berjangkit, Bahagian Kawalan Penyakit, Jabatan Kesihatan Awam, Kementerian Kesihatan Malaysia, http://www.moh.gov.my

  4. Agrawal, R., et al.: Mining association rules between sets of items in large databases. J. ACM SIGMOD Record. 22, 207–216 (1993)

    Article  Google Scholar 

  5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    MATH  Google Scholar 

  7. Zalizah, A.L., Azuraliza, A.B., Abdul-Razak, H.: Mining Multiple Attribute Values for Frequent Itemset Generation in Non-Binary Search Space (2009)

    Google Scholar 

  8. Runge-Ranzinger, S., Horstick, O., Marx, M., Kroeger, A.: What does dengue disease surveillance contribute to predicting and detecting outbreaks and describing trends? J. Tropical Medicine & International Health 13, 1022–1041 (2008)

    Google Scholar 

  9. Barbazan, P., Yoksan, S., Gonzalez, J.P.: Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics. J. Microbes and infection 4, 699–705 (2002)

    Article  Google Scholar 

  10. Talarmin, A., Peneau, C., Dussart, P., Pfaff, F., Courcier, M., de Rocca-Serra, B., Sarthou, J.L.: Surveillance of dengue fever in French Guiana by monitoring the results of negative malaria diagnoses. J. Epidemiology and Infection 125, 189–193 (2000)

    Article  Google Scholar 

  11. Excite, http://www.cdc.gov/excite/classroom/outbreak/objectives.htm

  12. Seng, S.B., Chong, A.K., Moore, A.: Geostatistical modelling, analysis and mapping of epidemiology of Dengue fever in Johor State, Malaysia (2005)

    Google Scholar 

  13. Shmueli, G.: Current and Potential Statistical Methods for Anomaly Detection in Modern Time Series Data: The Case of Biosurveillance. Data Mining Methods for Anomaly Detection (2005)

    Google Scholar 

  14. German, R.R., Armstrong, G., Birkhead, G.S., Horan, J.M., Herrera, G.: Updated guidelines for evaluating public health surveillance systems. MMWR Recomm. Rep. 50, 1–35 (2001)

    Google Scholar 

  15. Watkins, R.E., Eagleson, S., Veenendaal, B., Wright, G., Plant, A.J.: Applying cusum-based methods for the detection of outbreaks of Ross River virus disease in Western Australia. J. BMC Medical Informatics and Decision Making 8, 37 (2008)

    Article  Google Scholar 

  16. Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R., Mostashari, F.: A Space-Time Permutation Scan Statistic for Disease Outbreak Detection. J. Plos Medicine 2, 216 (2005)

    Article  Google Scholar 

  17. Buckeridge, D.L., Burkom, H., Campbell, M., Hogan, W.R., Moore, A.W.: Algorithms for rapid outbreak detection: a research synthesis. Journal of Biomedical Informatics 38, 99–113 (2005)

    Article  Google Scholar 

  18. Hutwagner, L., Browne, T., Seeman, G.M., Fleischauer, A.T.: Comparing aberration detection methods with simulated data. J. Emerging Infectious Diseases 11, 314–316 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Long, Z.A., Abu Bakar, A., Razak Hamdan, A., Sahani, M. (2010). Multiple Attribute Frequent Mining-Based for Dengue Outbreak. In: Cao, L., Feng, Y., Zhong, J. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17316-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17316-5_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17315-8

  • Online ISBN: 978-3-642-17316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics