Robust Spatial Regularization and Velocity Layer Separation for Optical Flow Computation on Transparent Sequences | SpringerLink
Skip to main content

Robust Spatial Regularization and Velocity Layer Separation for Optical Flow Computation on Transparent Sequences

  • Conference paper
Advances in Artificial Intelligence (MICAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6437))

Included in the following conference series:

  • 1339 Accesses

Abstract

Motion estimation in sequences with transparencies is an important problem in robotics and medical imaging applications. In this work we propose two procedures to improve the transparent optical flow computation. We build from a variational approach for estimating multi-valued velocity fields in transparent sequences. That method estimates multi-valued velocity fields which are not necessarily piecewise constant on a layer –each layer can evolve according to a non-parametric optical flow. First we introduce a robust statistical spatial interaction weight which allows to segment the multi-motion field. As result, our method is capable to recover the object’s shape and the velocity field for each object with high accuracy. Second, we develop a procedure to separate the component layers of rigid objects from a transparent sequence. Such a separation is possible because of the high accuracy of the object’s shape recovered from our transparent optical flow computation. Our proposal is robust to the presence of several objects in the same sequence as well as different velocities for the same object along the sequence. We show how our approach outperforms existing methods and we illustrate its capabilities on challenging sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oppenheim, A.V.: Superposition in a class of nonlinear systems. In: Proceedings of IEEE International Convention, New York, USA, pp. 171–177 (1964)

    Google Scholar 

  2. Guenther, R.D.: Modern Optics. John Wiley and Sons, Chichester (1990)

    MATH  Google Scholar 

  3. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  4. Black, M.J., Rangarajan, P.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. The International Journal of Computer Vision 19(1), 57–91 (1996)

    Article  Google Scholar 

  5. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing 6(2), 298–311 (1997)

    Article  Google Scholar 

  6. Ramirez-Manzanares, A., Rivera, M., Kornprobst, P., Lauze, F.: A variational approach for multi-valued velocity field estimation in transparent sequences. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 227–238. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Bergen, J.R., Burt, P.J., Hingorani, R., Peleg, S.: Computing two motions from three frames. In: Third International Conference on Computer Vision, Osaka, Japan, pp. 27–32 (December 1990)

    Google Scholar 

  8. Weiss, Y., Adelson, E.H.: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 321–326. IEEE, Los Alamitos (June 1996)

    Chapter  Google Scholar 

  9. Rivera, M., Ocegueda, O., Marroquin, J.L.: Entropy-controlled quadratic markov measure field models for efficient image segmentation. IEEE Transactions on Image Processing 16(12), 3047–3057 (2007)

    Article  MathSciNet  Google Scholar 

  10. Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of Royal Statistical Society 2, 192–236 (1974)

    MATH  Google Scholar 

  11. Toro, J., Owens, F., Medina, R.: Using known motion fields for image separation in transparency. Pattern Recognition Letters 24, 597–605 (2003)

    Article  Google Scholar 

  12. Sarel, B., Irani, M.: Separating transparent layers of repetitive dynamic behaviors. In: Proceedings of the Tenth International Conference on Computer Vision, Bejin, China, vol. 1, pp. 26–32. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  13. Oo, T., Kawasaki, H., Ohsawa, Y., Ikeuchi, K.: The separation of reflected and transparent layers from real-world image sequences. Mach. Vision Appl. 18(1), 17–24 (2007)

    Article  Google Scholar 

  14. Szeliski, R., Avidan, S., Anandan, P.: Layer extraction from multiple images containing reflections and transparency. In: Proceedings In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 246–253 (2000)

    Google Scholar 

  15. Sarel, B., Irani, M.: Separating transparent layers through layer information exchange. In: Pajdla, T., Matas, J. (eds.) Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, pp. 328–341. Springer, Heidelberg (2004)

    Google Scholar 

  16. Stuke, I., Aach, T., Barth, E., Mota, C.: Multiple-motion-estimation by block matching using MRF. International Journal of Computer and Information Science 26, 141–152 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramirez-Manzanares, A., Palafox-Gonzalez, A., Rivera, M. (2010). Robust Spatial Regularization and Velocity Layer Separation for Optical Flow Computation on Transparent Sequences. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds) Advances in Artificial Intelligence. MICAI 2010. Lecture Notes in Computer Science(), vol 6437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16761-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16761-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16760-7

  • Online ISBN: 978-3-642-16761-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics