Abstract
This paper presents a fast monocular visual odometry algorithm. We propose a closed form solution for the computation of the unknown scale ratio between two consecutive image pairs. Our method requires only 1 2D-3D correspondence. A least square solution can also be found in closed form when more correspondences are available. Additionally we provide a first order analysis on the propagation of the error from the noise in the image features to the computation of the scale. We show by means of simulated and real data that our method is more robust and accurate than standard techniques. We demonstrate that our visual odometry algorithm is well suited for the task of 3D reconstruction in urban areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ameller, M.-A., Triggs, B., Quan, L.: Camera pose revisited - new linear algorithms. Rapport Interne - Equipe MOVI (2000)
Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the p4p problem for camera with unknown focal length. In: CVPR (2008)
Dellaert, F., Seitz, S., Thorpe, C., Thrun, S.: Structure from motion without correspondence. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2000 ) (June 2000)
DeMenthon, D., Davis, L.S.: Exact and approximate solutions of the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1100–1105 (1992)
Dubbelman, G., van der Mark, W., Groen, F.C.A.: Accurate and robust ego-motion estimation using expectation maximization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)
Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (slam): Part i the essential algorithms. Robotics and Automation Magazine (2006)
Esteban, I., Dijk, J., Groen, F.: Fit3d toolbox: multiple view geometry and 3d reconstruction for matlab. In: International Symposium on Security and Defence Europe, SPIE (2010)
Eustice, R.M., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE J. Oceanic Eng. (2007) (accepted, to appear)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. pp. 726–740 (1987)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000), ISBN: 0521623049
Horn, B.: Recovering baseline and orientation from essential matrix (1990)
Kanatani, K.: Statistical Optimization for Geometric Computation. Dover, New York (1996)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. of Computer Vision (2004)
Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover (1980)
Moreno Noguer, F., Lepetit, V., Fua, P.: Accurate non-iterative o(n) solution to the pnp problem. In: ICCV 2007, pp. 1–8 (2007)
Nister, D.: An efficient solution to the five-point relative pose problem. In: CVPR (2003)
Nister, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. Journal of Field Robotics 23(1) (2006)
Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vision 59(3), 207–232 (2004)
Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point ransac. In: IEEE International Conference on Robotics and Automation (2009)
Scaramuzza, D., Siegwart, R.: Appearance guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics, Special Issue on Visual SLAM. Guest editors: José Neira, Andrew Davison, John J. Leonard (October 2008) (publication date)
Sur, F., Noury, N., Berger, M.-O.: Computing the uncertainty of the 8 point algorithm for fundamental matrix estimation. In: Everingham, M., Needham, C., Fraile, R. (eds.) 19th British Machine Vision Conference - BMVC 2008 Proceedings of the British Machine Vision Conference 2008, Leeds, Leeds United Kingdom (September 2008), http://www.comp.leeds.ac.uk/bmvc2008/proceedings/papers/269.pdf
Vedaldi, A.: An open implementation of the SIFT detector and descriptor. Technical Report 070012, UCLA CSD (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Esteban, I., Dorst, L., Dijk, J. (2010). Closed Form Solution for the Scale Ambiguity Problem in Monocular Visual Odometry. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-16584-9_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16583-2
Online ISBN: 978-3-642-16584-9
eBook Packages: Computer ScienceComputer Science (R0)