Abstract
PageRank is a very important ranking algorithm in web information retrieval or search engine. We present Power method with Arnoldi acceleration for the computation of Pagerank vector, which can take the advantage of both Power method and Arnoldi process. The description and implementation of the new algorithm are discussed in detail. Numerical results illustrate that our new method is efficient and faster than the existing counterparts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnoldi, W.E.: The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web, Standford Digital Libraries Working Paper (1998)
Berkhin, P.: A survey on PageRank computing. Internet Mathematics 2, 73–120 (2005)
Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing PageRank. BIT Numerical Mathematics 46, 759–771 (2006)
Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Mathematics 1, 335–380 (2005)
Kamvar, S.D., Haveliwala, T.H., Golub, G.H.: Adaptive methods for the computation of PageRank. Linear Algebra Appl. 386, 51–65 (2004)
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations. In: Proceedings of the Twelfth International World Wide Web Conference (2003)
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Exploiting the block structure of the web for computing PageRank. Stanford University Technical Report, SCCM-03-02 (2003)
Haveliwala, T.H., Kamvar, S.D.: The second eigenvalue of the Google matrix. In: Proceedings of the Twelfth International World Wide Web Conference (2003)
Wu, G., Wei, Y.: A Power–Arnoldi algorithm for computing PageRank. Numer. Linear Algebra Appl. 14, 521–546 (2007)
Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Mat. Anal. Appl. 17, 401–425 (1996)
Bellalij, M., Saad, Y., Sadok, H.: On the convergence of the Arnoldi process for eigenvalue problems. Report umsi-2007-12, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yin, GJ., Yin, JF. (2010). On Arnoldi Method Accelerating PageRank Computations. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds) Web Information Systems and Mining. WISM 2010. Lecture Notes in Computer Science, vol 6318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16515-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-16515-3_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16514-6
Online ISBN: 978-3-642-16515-3
eBook Packages: Computer ScienceComputer Science (R0)