Dynamic Proportional Share Scheduling in Hadoop | SpringerLink
Skip to main content

Dynamic Proportional Share Scheduling in Hadoop

  • Conference paper
Job Scheduling Strategies for Parallel Processing (JSSPP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6253))

Included in the following conference series:

Abstract

We present the Dynamic Priority (DP) parallel task scheduler for Hadoop. It allows users to control their allocated capacity by adjusting their spending over time. This simple mechanism allows the scheduler to make more efficient decisions about which jobs and users to prioritize and gives users the tool to optimize and customize their allocations to fit the importance and requirements of their jobs. Additionally, it gives users the incentive to scale back their jobs when demand is high, since the cost of running on a slot is then also more expensive. We envision our scheduler to be used by deadline or budget optimizing agents on behalf of users. We describe the design and implementation of the DP scheduler and experimental results. We show that our scheduler enforces service levels more accurately and also scales to more users with distinct service levels than existing schedulers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. White, T.: Hadoop: The Definitive Guide. O’Reilly, Sebastopol (2009)

    Google Scholar 

  2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Symposium on Operating System Design and Implementation (2004)

    Google Scholar 

  3. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: ACM Symposium on Operating Systems Principles (2003)

    Google Scholar 

  4. Bryant, R.E.: Data-intensive supercomputing: The case for DISC. Technical Report CMU-CS-07-128, Carnegie Mellon University (2007)

    Google Scholar 

  5. http://wiki.apache.org/hadoop/PoweredBy (2009)

  6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. In: Symposium on Operating System Design and Implementation (2006)

    Google Scholar 

  7. Sandholm, T., Lai, K.: Mapreduce optimization using regulated dynamic prioritization. In: SIGMETRICS 2009: Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, pp. 299–310. ACM, New York (2009)

    Google Scholar 

  8. Waldspurger, C.A.: Lottery and Stride Scheduling: Flexible Proportional-Share Resource Management. Technical Report MIT/LCS/TR-667 (1995)

    Google Scholar 

  9. Amazon elastic compute cloud (2008), http://aws.amazon.com/ec2 (retrieved March 6, 2008)

  10. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer Science, Heidelberg (2008)

    MATH  Google Scholar 

  11. Frachtenberg, E., Schwiegelsohn, U.: New Challenges of Parallel Job Scheduling. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 1–23. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Ousterhout, J.K.: Scheduling techniques for concurrent systems. In: 3rd International Conference on Distributed Computing Systems, pp. 22–30 (1982)

    Google Scholar 

  14. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling - a status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In: 7th International Workshop on Job Scheduling Strategies for Parallel Processing, pp. 87–102 (2001)

    Google Scholar 

  16. Chun, B.N., Culler, D.E.: Market-based proportional resource sharing for clusters. Technical Report CSD-1092, University of California at Berkeley, Computer Science Division (2000)

    Google Scholar 

  17. Lai, K., Rasmusson, L., Adar, E., Sorkin, S., Zhang, L., Huberman, B.A.: Tycoon: an implemention of a distributed market-based resource allocation system. Multiagent and Grid Systems 1, 169–182 (2005)

    Article  MATH  Google Scholar 

  18. Ernemann, C., Yahyapour, R.: Applying economic scheduling methods to grid environments. In: Grid Resource Management: State of the Art and Future Trends, pp. 491–506 (2004)

    Google Scholar 

  19. Piro, R.M., Guarise, A., Werbrouck, A.: An economy-based accounting infrastructure for the datagrid. In: GRID 2003: Proceedings of the 4th International Workshop on Grid Computing, Washington, DC, USA, p. 202. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  20. Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, W.S.: Spawn: A Distributed Computational Economy. Software Engineering 18, 103–117 (1992)

    Article  Google Scholar 

  21. Chun, B.N., Culler, D.E.: User-centric performance analysis of market-based cluster batch schedulers. In: Proceedings of the 2nd IEEE International Symposium on Cluster Computing and the Grid (2002)

    Google Scholar 

  22. Sandholm, T., Lai, K., Clearwater, S.: Admission control in a computational market. In: CCGrid 2008: Proceedings of the 8th International Symposium on Cluster Computing and the Grid (2008)

    Google Scholar 

  23. Wolski, R., Plank, J.S., Bryan, T., Brevik, J.: G-commerce: Market formulations controlling resource allocation on the computational grid. In: IPDPS 2001: Proceedings of the 15th International Parallel and Distributed Processing Symposium (IPDPS 2001), Washington, DC, USA, p. 10046.2. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  24. Buyya, R., Murshed, M., Abramson, D., Venugopal, S.: Scheduling Parameter Sweep Applications on Global Grids: A Deadline and Budget Constrained Cost-Time Optimisation Algorithm. Software: Practice and Experience (SPE) Journal 35, 491–512 (2005)

    Google Scholar 

  25. Feldman, M., Lai, K., Zhang, L.: A price-anticipating resource allocation mechanism for distributed shared clusters. In: Proceedings of the ACM Conference on Electronic Commerce (2005)

    Google Scholar 

  26. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce performance in heterogeneous environments. In: OSDI 2008: 8th USENIX Symposium on Operating Systems Design and Implementation (2008)

    Google Scholar 

  27. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Job scheduling for multi-user mapreduce clusters. Technical Report UCB/EECS-2009-55, Electrical Engineering and Computer Sciences University of California at Berkeley (2009)

    Google Scholar 

  28. Rafique, M.M., Rose, B., Butt, A.R., Nikolopoulos, D.S.: Cellmr: A framework for supporting mapreduce on asymmetric cell-based clusters. Parallel and Distributed Processing Symposium, International, 1–12 (2009)

    Google Scholar 

  29. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a MapReduce framework on graphics processors. In: PACT 2008: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, pp. 260–269. ACM, New York (2008)

    Google Scholar 

  30. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapReduce for multi-core and multiprocessor systems. In: HPCA 2007: IEEE 13th International Symposium on High Performance Computer Architecture, pp. 13–24 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandholm, T., Lai, K. (2010). Dynamic Proportional Share Scheduling in Hadoop. In: Frachtenberg, E., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2010. Lecture Notes in Computer Science, vol 6253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16505-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16505-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16504-7

  • Online ISBN: 978-3-642-16505-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics