A Method for Group Extraction in Complex Social Networks | SpringerLink
Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 111))

Included in the following conference series:

Abstract

The extraction of social groups from social networks existing among employees in the company, its customers or users of various computer systems became one of the research areas of growing importance. Once we have discovered the groups, we can utilise them, in different kinds of recommender systems or in the analysis of the team structure and communication within a given population.

The shortcomings of the existing methods for community discovery and lack of their applicability in multi-layered social networks were the inspiration to create a new group extraction method in complex multi-layered social networks. The main idea that stands behind this new concept is to utilise the modified version of a measure called by authors multi-layered clustering coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnes, J.A.: Class and Committees in a Norwegian Island Parish. Human Relations 7, 39–58 (1954)

    Article  Google Scholar 

  2. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008)

    Google Scholar 

  3. Caldarelli, G., Vespignani, A. (eds.): Large Scale Structure and Dynamics of Complex Networks, From Information Technology to Finance and Natural Science, Complex Systems and Interdisciplinary Science, vol. 2. World Scientific Publishing Co. Pte. Ltd., Singapore (2007)

    MATH  Google Scholar 

  4. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gleiser, P., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6, 565 (2003)

    Article  Google Scholar 

  6. Kazienko, P., Musial, K., Kajdanowicz, T.: Multidimensional Social Network and Its Application to the Social Recommender System. IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans (2010) (in press)

    Google Scholar 

  7. Palla, G., Barabasi, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  8. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  9. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. PNAS 101, 2658–2663 (2004)

    Article  Google Scholar 

  10. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (1998)

    Article  Google Scholar 

  11. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Community structure in online collegiate social networks, eprint arXiv:0809.0690

    Google Scholar 

  12. Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as spectroscopy: Automated discovery of community structure within organizations. In: Communities and Technologies, pp. 81–96. Kluwer, B.V., Deventer (2003)

    Chapter  Google Scholar 

  13. Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cambridge University Press, New York (1994)

    Book  MATH  Google Scholar 

  14. Watts, D.J., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–444 (1998)

    Article  Google Scholar 

  15. Wilkinson, D.M., Huberman, B.A.: A method for finding communities of related genes. Proc. Natl. Acad. Sci. U.S.A. 101, 5241–5248 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bródka, P., Musial, K., Kazienko, P. (2010). A Method for Group Extraction in Complex Social Networks. In: Lytras, M.D., Ordonez De Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds) Knowledge Management, Information Systems, E-Learning, and Sustainability Research. WSKS 2010. Communications in Computer and Information Science, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16318-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16318-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16317-3

  • Online ISBN: 978-3-642-16318-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics