Abstract
The game-based approach to security proofs in cryptography is a widely-used methodology for writing proofs rigorously. However a unifying language for writing games is still missing. In this paper we show how CSLR, a probabilistic lambda-calculus with a type system that guarantees that computations are probabilistic polynomial time, can be equipped with a notion of game indistinguishability. This allows us to define cryptographic constructions, effective adversaries, security notions, computational assumptions, game transformations, and game-based security proofs in the unified framework provided by CSLR. Our code for cryptographic constructions is close to implementation in the sense that we do not assume arbitrary uniform distributions but use a realistic algorithm to approximate them. We illustrate our calculus on cryptographic constructions for public-key encryption and pseudorandom bit generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Affeldt, R., Nowak, D., Yamada, K.: Certifying assembly with formal cryptographic proofs: the case of BBS. In: Proceedings of the 9th International Workshop on Automated Verification of Critical Systems, AVoCS 2009 (2009)
Backes, M., Berg, M., Unruh, D.: A formal language for cryptographic pseudocode. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 353–376. Springer, Heidelberg (2008)
Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: Proceedings of the 36th ACM SIGPLAN- SIGACT Symposium on Principles of Programming Languages (POPL 2009), pp. 90–101. ACM Press, New York (2009)
Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. In: Computational Complexity, vol. 2, pp. 97–110 (1992)
Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm. Journal of Cryptology 21, 469–491 (2008)
Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Heidelberg (2006)
Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo random number generator. SIAM Journal on Computing. Society for Industrial and Applied Mathematics 15(2), 364–383 (1986)
Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–83. Springer, Heidelberg (1998)
Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004)
Corin, R., den Hartog, J.: A probabilistic Hoare-style logic for game-based cryptographic proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 252–263. Springer, Heidelberg (2006)
Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards automated proofs for asymmetric encryption schemes in the random oracle model. In: Proceedings of the 15th ACM Conference Computer and Communications Security, CCS 2008, pp. 371–380. ACM Press, New York (2008)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)
Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)
Goldreich, O.: The Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)
Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences (JCSS) 28(2), 270–299 (1984) (An earlier version appeared in proceedings of STOC 1982)
Hofmann, M.: A Mixed Modal/Linear Lambda Calculus with Applications to Bellantoni-Cook Safe Recursion. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 275–294. Springer, Heidelberg (1998)
Hofmann, M.: Safe recursion with higher types and BCK-algebra. In: Annals of Pure and Applied Logic, vol. 1414, 104(1-3), pp. 113–166 (2000)
Hurd, J.: A formal approach to probabilistic termination. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 230–245. Springer, Heidelberg (2002)
Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryptographic constructions. Journal of Computer and System Sciences 72(2), 286–320 (2006)
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)
Mitchell, J.C., Mitchell, M., Scedrov, A.: A linguistic characterization of bounded oracle computation and probabilistic polynomial time. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS 1998), pp. 725–733 (1998)
Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic polynomial-time process calculus for the analysis of cryptographic protocols. Theoretical Computer Science 353(1-3), 118–164 (2006)
Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)
Nowak, D.: A framework for game-based security proofs. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 319–333. Springer, Heidelberg (2007)
Nowak, D.: On formal verification of arithmetic-based cryptographic primitives. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 368–382. Springer, Heidelberg (2009)
Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions. In: Proceedings of the 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2002), pp. 154–165 (2002)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)
Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the IEEE 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 80–91. IEEE, Los Alamitos (1982)
Zhang, Y.: The Computational SLR: A Logic for Reasoning about Computational Indistinguishability. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 401–415. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nowak, D., Zhang, Y. (2010). A Calculus for Game-Based Security Proofs. In: Heng, SH., Kurosawa, K. (eds) Provable Security. ProvSec 2010. Lecture Notes in Computer Science, vol 6402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16280-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-16280-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16279-4
Online ISBN: 978-3-642-16280-0
eBook Packages: Computer ScienceComputer Science (R0)