How Do You Like Your Equilibrium Selection Problems? Hard, or Very Hard? | SpringerLink
Skip to main content

How Do You Like Your Equilibrium Selection Problems? Hard, or Very Hard?

  • Conference paper
Algorithmic Game Theory (SAGT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6386))

Included in the following conference series:

  • 1684 Accesses

Abstract

The PPAD-completeness of Nash equilibrium computation is taken as evidence that the problem is computationally hard in the worst case. This evidence is necessarily rather weak, in the sense that PPAD is only know to lie “between P and NP”, and there is not a strong prospect of showing it to be as hard as NP. Of course, the problem of finding an equilibrium that has certain sought-after properties should be at least as hard as finding an unrestricted one, thus we have for example the NP-hardness of finding equilibria that are socially optimal (or indeed that have various efficiently checkable properties), the results of Gilboa and Zemel [6], and Conitzer and Sandholm [3]. In the talk I will give an overview of this topic, and a summary of recent progress showing that the equilibria that are found by the Lemke-Howson algorithm, as well as related homotopy methods, are PSPACE-complete to compute. Thus we show that there are no short cuts to the Lemke-Howson solutions, subject only to the hardness of PSPACE. I mention some open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandt, F., Fischer, F., Harrenstein, P.: On the Rate of Convergence of Fictitious Play. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 103–114. Springer, Heidelberg (2010)

    Google Scholar 

  2. Conitzer, V.: Approximation Guarantees for Fictitious Play. In: Proceedings of the 47th Annual Allerton Conference on Communication, Control and Computing (Allerton 2009), pp. 636–643 (2009)

    Google Scholar 

  3. Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. In: 18th International Joint Conference on Artificial Intelligence, IJCAI (2003)

    Google Scholar 

  4. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Computing a Nash Equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  6. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games and Economic Behavior 1, 80–93 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldberg, P.W., Papadimitriou, C.H., Savani, R.: The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions, Arxiv technical report 1006.5352 (2010)

    Google Scholar 

  8. Herings, P.J.-J., Peeters, R.: Homotopy methods to compute equilibria in game theory. Economic Theory 42(1), 119–156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Savani, R., von Stengel, B.: Hard-to-Solve Bimatrix Games. Econometrica 74(2), 397–429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, P.W. (2010). How Do You Like Your Equilibrium Selection Problems? Hard, or Very Hard?. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds) Algorithmic Game Theory. SAGT 2010. Lecture Notes in Computer Science, vol 6386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16170-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16170-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16169-8

  • Online ISBN: 978-3-642-16170-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics