Planning Cooperative Motions of Cognitive Automobiles Using Tree Search Algorithms | SpringerLink
Skip to main content

Planning Cooperative Motions of Cognitive Automobiles Using Tree Search Algorithms

  • Conference paper
KI 2010: Advances in Artificial Intelligence (KI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6359))

Included in the following conference series:

  • 2772 Accesses

Abstract

A tree search algorithm is proposed for planning cooperative motions of multiple vehicles. The method relies on planning techniques from artificial intelligence such as A* search and cost-to-go estimation. It avoids the restrictions of decoupling assumptions and exploits the full potential of cooperative actions. Precomputation of lower bounds is used to restrict the search to a small portion of the tree of possible cooperative actions. The proposed algorithm is applied to the problem of planning cooperative maneuvers for multiple cognitive vehicles with the aim of preventing accidents in dangerous traffic situations. Simulation results show the feasibility of the approach and the performance gain obtained by precomputing lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batz, T., Watson, K., Beyerer, J.: Recognition of dangerous situations within a cooperative group of vehicles. In: Proc. IEEE Intelligent Vehicles Symposium, Xi’an, China, pp. 907–912 (June 2009)

    Google Scholar 

  2. Berger, J.O.: Statistical decision theory and Bayesian analysis, 2nd edn. Springer Series in Statistics. Springer, New York (1993)

    Google Scholar 

  3. Erdmann, M., Lozano-Pérez, T.: On multiple moving objects. Algorithmica 2, 477–521 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frese, C.: Cooperative motion planning using branch and bound methods. Tech. Rep. IES-2009-13. In: Beyerer, J., Huber, M. (eds.) Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory, pp. 187–201. KIT Scientific Publishing (2010)

    Google Scholar 

  5. Frese, C., Batz, T., Beyerer, J.: Kooperative Bewegungsplanung zur Unfallvermeidung im Straßenverkehr mit der Methode der elastischen Bänder. In: Dillmann, R., et al. (eds.) Autonome Mobile Systems, pp. 193–200. Springer, Heidelberg (2009)

    Google Scholar 

  6. Frese, C., Beyerer, J., Zimmer, P.: Cooperation of cars and formation of cooperative groups. In: Proc. IEEE Intelligent Vehicles Symposium, Istanbul, pp. 227–232 (June 2007)

    Google Scholar 

  7. Ghrist, R., LaValle, S.: Nonpositive curvature and pareto optimal coordination of robots. SIAM Journal on Control and Optimization 45(5), 1697–1713 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on System Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  9. Hillenbrand, J.: Fahrerassistenz zur Kollisionsvermeidung. Dissertation, Universität Karlsruhe, TH (2007)

    Google Scholar 

  10. Kant, K., Zucker, S.: Toward efficient trajectory planning: The path-velocity decomposition. Int. J. Robotics Research 5(3), 72–89 (1986)

    Article  Google Scholar 

  11. LaValle, S.: Planning Algorithms, 1st edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  12. LaValle, S., Hutchinson, S.: Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation 14(6), 912–925 (1998)

    Article  Google Scholar 

  13. Regele, R., Levi, P.: Kooperative Multi-Roboter-Wegplanung durch heuristische Prioritätenanpassung. In: Autonome Mobile Systems, pp. 33–39. Springer, Heidelberg (2005)

    Google Scholar 

  14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)

    MATH  Google Scholar 

  15. Sánchez, G., Latombe, J.C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. J. Robotics Research 21(1), 5–26 (2002)

    Article  Google Scholar 

  16. Schmidt, C., Oechsle, F., Branz, W.: Research on trajectory planning in emergency situations with multiple objects. In: Proc. IEEE Intelligent Transportation Systems Conference, pp. 988–992 (September 2006)

    Google Scholar 

  17. Švestka, P., Overmars, M.: Coordinated path planning for multiple robots. Robotics and Autonomous Systems 23, 125–152 (1998)

    Article  Google Scholar 

  18. Vacek, S., Nagel, R., Batz, T., Moosmann, F., Dillmann, R.: An integrated simulation framework for cognitive automobiles. In: Proc. IEEE Intelligent Vehicles Symposium, Istanbul, pp. 221–226 (June 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frese, C., Beyerer, J. (2010). Planning Cooperative Motions of Cognitive Automobiles Using Tree Search Algorithms. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds) KI 2010: Advances in Artificial Intelligence. KI 2010. Lecture Notes in Computer Science(), vol 6359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16111-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16111-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16110-0

  • Online ISBN: 978-3-642-16111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics