Abstract
The conference “Algorithmic Learning Theory 2010” is dedicated to studies of learning from a mathematical and algorithmic perspective. Researchers consider various abstract models of the problem of learning and investigate how the learning goal in such a setting can be formulated and achieved. These models describe ways to define
-
the goal of learning,
-
how the learner retrieves information about its environment,
-
how to form of the learner’s models of the world (in some cases).
Retrieving information in some models is passive where the learner just views a stream of data. In other models, the learner is more active, asking questions or learning from its actions. Besides explicit formulation of hypotheses in an abstract language with respect to some indexing system, there are also more implicit methods like making predictions according to the current hypothesis on some arguments which then are evaluated with respect to their correctness, and wrong predictions (coming from wrong hypotheses) incur some loss on the learner. In the following, a more detailed introduction is given to the five invited talks and then to the regular contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (2010). Editors’ Introduction. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2010. Lecture Notes in Computer Science(), vol 6331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16108-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-16108-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16107-0
Online ISBN: 978-3-642-16108-7
eBook Packages: Computer ScienceComputer Science (R0)