Abstract
Feature hierarchies are essential to many visual object recognition systems and are well motivated by observations in biological systems. The present paper proposes an algorithm to incrementally compute feature hierarchies. The features are represented as estimated densities, using a variant of local soft histograms. The kernel functions used for this estimation in conjunction with their unitary extension establish a tight frame and results from framelet theory apply. Traversing the feature hierarchy requires resampling of the spatial and the feature bins. For the resampling, we derive a multi-resolution scheme for quadratic spline kernels and we derive an optimization algorithm for the upsampling. We complement the theoretic results by some illustrative experiments, consideration of convergence rate and computational efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)
Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)
Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: Computer Vision and Pattern Recognition, pp. 994–1000 (2005)
Mutch, J., Lowe, D.G.: Multiclass object recognition with sparse, localized features. In: Computer Vision and Pattern Recognition, pp. 11–18 (2006)
Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: Intern. Conf. Computer Vision, pp. 1458–1465 (2005)
Felsberg, M.: Spatio-featural scale-space. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) Scale Space and Variational Methods in Computer Vision. LNCS, vol. 5567, pp. 808–819. Springer, Heidelberg (2009)
Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nature Reviews – Neuroscience 1, 125–132 (2000)
Snippe, H.P., Koenderink, J.J.: Discrimination thresholds for channel-coded systems. Biological Cybernetics 66, 543–551 (1992)
Howard, I.P., Rogers, B.J.: Binocular Vision and Stereopsis. OUP, Oxford (1995)
Granlund, G.H.: An associative perception-action structure using a localized space variant information representation. In: Sommer, G., Zeevi, Y.Y. (eds.) AFPAC 2000. LNCS, vol. 1888, pp. 48–68. Springer, Heidelberg (2000)
Felsberg, M., Forssén, P.E., Scharr, H.: Channel smoothing: Efficient robust smoothing of low-level signal features. IEEE PAMI 28(2), 209–222 (2006)
Granlund, G.H.: In search of a general picture processing operator. Computer Graphics and Image Processing 8, 155–173 (1978)
Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communications 31(4), 532–540 (1983)
Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Analysis Machine Intelligence 11, 674–693 (1989)
Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 41(7), 909–996 (1988)
Chan, R.H., Shen, Z., Xia, T.: A framelet algorithm for enhancing video stills. Applied and Computational Harmonic Analysis 23(2), 153–170 (2007)
Jonsson, E., Felsberg, M.: Efficient computation of channel-coded feature maps through piecewise polynomials. Image and Vision Comp. 27(11), 1688–1694 (2009)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Petukhov, A.: Symmetric framelets. Constr. Approx 19, 309–328 (2000)
Chan, R.H., Riemenschneider, S.D., Shen, L., Shen, Z.: Tight frame: an efficient way for high-resolution image reconstruction. ACHA 17(1), 91–115 (2004)
Chui, C.K., He, W.: Compactly supported tight frames associated with refinable functions. Applied and Computational Harmonic Analysis 8(3), 293–319 (2000)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thomson-Engineering (2007)
Vikstén, F., Forssén, P.E., Johansson, B., Moe, A.: Comparison of local image descriptors for full 6 degree-of-freedom pose estimation. In: IEEE ICRA (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Felsberg, M. (2010). Incremental Computation of Feature Hierarchies. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-15986-2_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15985-5
Online ISBN: 978-3-642-15986-2
eBook Packages: Computer ScienceComputer Science (R0)