Abstract
With the introduction of the Semantic Web as a future substitute of the Web, the key task for the Web, namely, Web Search, is evolving towards some novel form of Semantic Web search. A very promising recent approach to Semantic Web search is based on combining standard Web pages and search queries with ontological background knowledge, and using standard Web search engines as the main inference motor of Semantic Web search. In this paper, we continue this line of research. We propose to further enhance this approach by the use of inductive reasoning. This increases the robustness of Semantic Web search, as it adds the important ability to handle inconsistencies, noise, and incompleteness, which are all very likely to occur in distributed and heterogeneous environments such as the Web. In particular, inductive reasoning allows to infer (from training individuals) new knowledge, which is not logically deducible. We also report on a prototype implementation of the new approach and its experimental evaluations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)
Bao, J., Kendall, E.F., McGuinness, D.L., Wallace, E.K.: OWL2 Web ontology language: Quick reference guide (2008), http://www.w3.org/TR/owl2-quick-reference/
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284, 34–43 (2001)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 30(1-7), 107–117 (1998)
Buitelaar, P., Cimiano, P.: Ontology Learning and Population: Bridging the Gap Between Text and Knowledge. IOS Press, Amsterdam (2008)
Chirita, P.-A., Costache, S., Nejdl, W., Handschuh, S.: P-TAG: Large scale automatic generation of personalized annotation TAGs for the Web. In: Proc. WWW 2007, pp. 845–854. ACM Press, New York (2007)
d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)
Ding, L., Finin, T.W., Joshi, A., Peng, Y., Pan, R., Reddivari, P.: Search on the Semantic Web. IEEE Computer 38(10), 62–69 (2005)
Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)
Fanizzi, N., d’Amato, C., Esposito, F.: Induction of classifiers through non-parametric methods for approximate classification and retrieval with ontologies. International Journal of Semantic Computing 2(3), 403–423 (2008)
Fanizzi, N., d’Amato, C., Esposito, F.: Metric-based stochastic conceptual clustering for ontologies. Inform. Syst. 34(8), 725–739 (2009)
Fazzinga, B., Gianforme, G., Gottlob, G., Lukasiewicz, T.: Semantic Web search based on ontological conjunctive queries. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 153–172. Springer, Heidelberg (2010)
Fazzinga, B., Lukasiewicz, T.: Semantic search on the Web. Semantic Web — Interoperability, Usability, Applicability (forthcoming)
Guha, R.V., McCool, R., Miller, E.: Semantic search. In: Proc. WWW 2003, pp. 700–709. ACM Press, New York (2003)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning – Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)
Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a Web ontology language. J. Web. Sem. 1(1), 7–26 (2003)
Lei, Y., Uren, V.S., Motta, E.: SemSearch: A search engine for the Semantic Web. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245. Springer, Heidelberg (2006)
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search — The Metric Space Approach. In: Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)
W3C. OWL Web ontology language overview, 2004. W3C Recommendation (February 10, 2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
d’Amato, C., Fanizzi, N., Fazzinga, B., Gottlob, G., Lukasiewicz, T. (2010). Combining Semantic Web Search with the Power of Inductive Reasoning. In: Deshpande, A., Hunter, A. (eds) Scalable Uncertainty Management. SUM 2010. Lecture Notes in Computer Science(), vol 6379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15951-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-15951-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15950-3
Online ISBN: 978-3-642-15951-0
eBook Packages: Computer ScienceComputer Science (R0)