Transmission of Distributed Deterministic Temporal Information through a Diverging/Converging Three-Layers Neural Network | SpringerLink
Skip to main content

Transmission of Distributed Deterministic Temporal Information through a Diverging/Converging Three-Layers Neural Network

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

This study investigates the ability of a diverging/converging neural network to transmit and integrate a complex temporally organized activity embedded in afferent spike trains. The temporal information is originally generated by a deterministic nonlinear dynamical system whose parameters determine a chaotic attractor. We present the simulations obtained with a network formed by simple spiking neurons (SSN) and a network formed by a multiple-timescale adaptive threshold neurons (MAT). The assessment of the temporal structure embedded in the spike trains is carried out by sorting the preferred firing sequences detected by the pattern grouping algorithm (PGA). The results suggest that adaptive threshold neurons are much more efficient in maintaining a specific temporal structure distributed across multiple spike trains throughout the layers of a feed-forward network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mpitsos, G.J.: Chaos in brain function and the problem of nonstationarity: a commentary. In: Basar, E., Bullock, T.H. (eds.) Dynamics of Sensory and Cognitive Processing by the Brain, pp. 521–535. Springer, Heidelberg (1989)

    Google Scholar 

  2. Celletti, A., Villa, A.E.P.: Determination of chaotic attractors in the rat brain. J. Stat. Physics 84, 1379–1385 (1996)

    Article  Google Scholar 

  3. Tetko, I.V., Villa, A.E.: A comparative study of pattern detection algorithm and dynamical system approach using simulated spike trains. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 37–42. Springer, Heidelberg (1997)

    Google Scholar 

  4. Asai, Y., Yokoi, T., Villa, A.E.P.: Detection of a dynamical system attractor from spike train analysis. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 623–631. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Asai, Y., Guha, A., Villa, A.E.P.: Deterministic neural dynamics transmitted through neural networks. Neural Networks 21, 799–809 (2008)

    Article  Google Scholar 

  6. Abeles, M.: Local Cortical Circuits. Springer, Heidelberg (1982)

    Google Scholar 

  7. Asai, Y., Villa, A.E.: Spatio temporal filtering of the distributed spike train with deterministic structure by ensemble of spiking neurons. In: The 8th Intenational Neural Coding Workshop Proceedings, Tainan, Taiwan, pp. 81–83 (2009)

    Google Scholar 

  8. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks 15, 1063–1070 (2004)

    Article  Google Scholar 

  9. Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput. Neurosci. 3 (2009), doi:10.3389/neuro.10.009.2009

    Google Scholar 

  10. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  11. Zaslavskii, G.M.: The simplest case of a strange attractor. Phys. Let. 69A, 145–147 (1978)

    Article  MathSciNet  Google Scholar 

  12. Villa, A.E.P., Tetko, I.V.: Spatiotemporal activity patterns detected from single cell measurements from behaving animals. In: Proceedings SPIE, vol. 3728, pp. 20–34 (1999)

    Google Scholar 

  13. Tetko, I.V., Villa, A.E.P.: A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. detection of repeated patterns. J. Neurosci. Meth. 105, 1–14 (2001)

    Article  Google Scholar 

  14. Abeles, M., Gat, I.: Detecting precise firing sequences in experimental data. Journal of Neuroscience Methods 107, 141–154 (2001)

    Article  Google Scholar 

  15. Sacerdote, L., Villa, A.E., Zucca, C.: On the classification of experimental data modeled via a stochastic leaky integrate and fire model through boundary values. Bull. Math. Biol. 68, 1257–1274 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asai, Y., Villa, A.E.P. (2010). Transmission of Distributed Deterministic Temporal Information through a Diverging/Converging Three-Layers Neural Network. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics