Abstract
Many statistical methods have been proposed to estimate causal models in classical situations with fewer variables than observations. However, modern datasets including gene expression data increase the needs of high-dimensional causal modeling in challenging situations with orders of magnitude more variables than observations. In this paper, we propose a method to find exogenous variables in a linear non-Gaussian causal model, which requires much smaller sample sizes than conventional methods and works even when orders of magnitude more variables than observations. Exogenous variables work as triggers that activate causal chains in the model, and their identification leads to more efficient experimental designs and better understanding of the causal mechanism. We present experiments with artificial data and real-world gene expression data to evaluate the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
di Bernardo, D., Thompson, M., Gardner, T., Chobot, S., Eastwood, E., Wojtovich, A., Elliot, S., Schaus, S., Collins, J.: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nature Biotech. 23, 377–383 (2005)
Londei, A., D’Ausilio, A., Basso, D., Belardinelli, M.O.: A new method for detecting causality in fMRI data of cognitive processing. Cog. Proc. 7, 42–52 (2006)
Pearl, J.: Causality: Models, Reasoning, and Inference. Camb. Univ. Press, Cambridge (2000)
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, Heidelberg (1993)
Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. Wiley, New York (2001)
Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 62–83 (1994)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks 10, 626–634 (1999)
Delfosse, N., Loubaton, P.: Adaptive blind separation of independent sources: a deflation approach. Signal Processing 45, 59–83 (1995)
Lehmann, E., Romano, J.: Testing Statistical Hypotheses. Springer, Heidelberg (2005)
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995)
Ivshina, A.V., George, J., Senko, O., Mow, B., Putti, T.C., Smeds, J., Lindahl, T., Pawitan, Y., Hall, P., Nordgren, H., Wong, J.E.L., Liu, E.T., Bergh, J., Kuznetsov, V.A., Miller, L.D.: Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 66, 10292–10301 (2006)
Lorén, C., Schrader, J., Ahlgren, U., Gunhaga, L.: FGF signals induce Caprin2 expression in the vertebrate lens. Differentiation 77, 386–394 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sogawa, Y., Shimizu, S., Hyvärinen, A., Washio, T., Shimamura, T., Imoto, S. (2010). Discovery of Exogenous Variables in Data with More Variables Than Observations. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-15819-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15818-6
Online ISBN: 978-3-642-15819-3
eBook Packages: Computer ScienceComputer Science (R0)