Discovery of Exogenous Variables in Data with More Variables Than Observations | SpringerLink
Skip to main content

Discovery of Exogenous Variables in Data with More Variables Than Observations

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

Many statistical methods have been proposed to estimate causal models in classical situations with fewer variables than observations. However, modern datasets including gene expression data increase the needs of high-dimensional causal modeling in challenging situations with orders of magnitude more variables than observations. In this paper, we propose a method to find exogenous variables in a linear non-Gaussian causal model, which requires much smaller sample sizes than conventional methods and works even when orders of magnitude more variables than observations. Exogenous variables work as triggers that activate causal chains in the model, and their identification leads to more efficient experimental designs and better understanding of the causal mechanism. We present experiments with artificial data and real-world gene expression data to evaluate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. di Bernardo, D., Thompson, M., Gardner, T., Chobot, S., Eastwood, E., Wojtovich, A., Elliot, S., Schaus, S., Collins, J.: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nature Biotech. 23, 377–383 (2005)

    Article  Google Scholar 

  2. Londei, A., D’Ausilio, A., Basso, D., Belardinelli, M.O.: A new method for detecting causality in fMRI data of cognitive processing. Cog. Proc. 7, 42–52 (2006)

    Article  Google Scholar 

  3. Pearl, J.: Causality: Models, Reasoning, and Inference. Camb. Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  5. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)

    MathSciNet  Google Scholar 

  6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. Wiley, New York (2001)

    Book  Google Scholar 

  7. Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 62–83 (1994)

    Article  Google Scholar 

  8. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  9. Delfosse, N., Loubaton, P.: Adaptive blind separation of independent sources: a deflation approach. Signal Processing 45, 59–83 (1995)

    Article  MATH  Google Scholar 

  10. Lehmann, E., Romano, J.: Testing Statistical Hypotheses. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  11. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Ivshina, A.V., George, J., Senko, O., Mow, B., Putti, T.C., Smeds, J., Lindahl, T., Pawitan, Y., Hall, P., Nordgren, H., Wong, J.E.L., Liu, E.T., Bergh, J., Kuznetsov, V.A., Miller, L.D.: Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 66, 10292–10301 (2006)

    Article  Google Scholar 

  13. Lorén, C., Schrader, J., Ahlgren, U., Gunhaga, L.: FGF signals induce Caprin2 expression in the vertebrate lens. Differentiation 77, 386–394 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sogawa, Y., Shimizu, S., Hyvärinen, A., Washio, T., Shimamura, T., Imoto, S. (2010). Discovery of Exogenous Variables in Data with More Variables Than Observations. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics