Abstract
The neural mass models have been widely used for simulating the highly complex Electroencephalogram (EEG) rhythmic activity, when the extrinsic input p(t) passes through the model, similar oscillatory signals are produced. In this paper, we present an empirical exploration to the theoretical prediction of such a model by fitting the actual EEG signal to the Jansen’s neural mass model. The results suggest that the model can produce good approximation to the actual EEG signal. The extrinsic input used formerly has a relatively big SD (standard deviation), which may produce unreliable synthetic data, even bias the analysis results. In our study, the mean values of estimated p(t) fall well within the interval for the simulate study recommended by previous reports, but the SD of p(t) is far less than the experience value used before.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wendling, F., Bellanger, J.J., Bartolomei, F., Chauvel, P.: Relevance of nonlinear lumpedparameter models in the analysis of depth-eeg epileptic signals. Biological Cybernetics 83, 367–378 (2000)
Niranjan, C., Sabesan, S., Tsakalis, K., Iasemidis, L.: Controlling epileptic seizures in a neural mass model. J. Comb. Optim. 17, 98–116 (2009)
Sotero, R.C., Barreto, N.J.T., Medina, Y.I., Carbonell, F., Jimenez, J.C.: Realistically coupled neural mass models can generate EEG rhythms. Neural Computation 19, 478–512 (2007)
Babajani, A., Soltanian-Zadeh, H.: Integrated MEG/EEG and fMRI model based on neural masses. IEEE Transactions on Biomedical Engineering 53(7), 1794–1801 (2006)
Zavaglia, M., Astolfi, L., Babiloni, F., Ursino, M.: A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. Journal of Neuroscience Methods 157, 317–329 (2006)
Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics 73, 357–366 (1995)
David, O., Friston, K.J.: A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20, 1743–1755 (2003)
David, O., Cosmelli, D., Friston, K.J.: Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage 21, 659–673 (2004)
van der Merwe, R., Wan, E.A.: The square-root unscented Kalman filter for state and parameter-estimation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6, pp. 3461–3464 (2001)
Hu, Z.H., Shi, P.C.: Regularity and Complexity of Human Electroencephalogram Dynamics: Applications to Diagnosis of Alzheimers Disease. In: IEEE International Conference on Pattern Recognition (ICPR), vol. 3, pp. 245–248 (2006)
Jansen, B.H., Kavaipatti, A.B., Markusson, O.: Evoked potential enhancement using a neurophysiologically-based model. Method Inform. Med. 40, 338–345 (2001)
Valdes, P.A., Jimenez, J.C., Riera, J., Biscay, R., Ozaki, T.: Nonlinear EEG analysis based on a nerual mass model. Biological Cybernetics 81, 415–424 (1999)
Ponten, S.C., Daffertshofer, A., Hillebrand, A., Stam, C.J.: The relationship between structural and functional connectivity: Graph theoretical analysis of an EEG neural mass model. NeuroImage (2009), doi:10.1016/j.neuroimage.2009.10.049
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fang, X., Hu, Z., Shi, P. (2010). Neural Mass Model Driven Nonlinear EEG Analysis. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)