Neural Mass Model Driven Nonlinear EEG Analysis | SpringerLink
Skip to main content

Neural Mass Model Driven Nonlinear EEG Analysis

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6326))

Included in the following conference series:

  • 2301 Accesses

Abstract

The neural mass models have been widely used for simulating the highly complex Electroencephalogram (EEG) rhythmic activity, when the extrinsic input p(t) passes through the model, similar oscillatory signals are produced. In this paper, we present an empirical exploration to the theoretical prediction of such a model by fitting the actual EEG signal to the Jansen’s neural mass model. The results suggest that the model can produce good approximation to the actual EEG signal. The extrinsic input used formerly has a relatively big SD (standard deviation), which may produce unreliable synthetic data, even bias the analysis results. In our study, the mean values of estimated p(t) fall well within the interval for the simulate study recommended by previous reports, but the SD of p(t) is far less than the experience value used before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wendling, F., Bellanger, J.J., Bartolomei, F., Chauvel, P.: Relevance of nonlinear lumpedparameter models in the analysis of depth-eeg epileptic signals. Biological Cybernetics 83, 367–378 (2000)

    Article  Google Scholar 

  2. Niranjan, C., Sabesan, S., Tsakalis, K., Iasemidis, L.: Controlling epileptic seizures in a neural mass model. J. Comb. Optim. 17, 98–116 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sotero, R.C., Barreto, N.J.T., Medina, Y.I., Carbonell, F., Jimenez, J.C.: Realistically coupled neural mass models can generate EEG rhythms. Neural Computation 19, 478–512 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babajani, A., Soltanian-Zadeh, H.: Integrated MEG/EEG and fMRI model based on neural masses. IEEE Transactions on Biomedical Engineering 53(7), 1794–1801 (2006)

    Article  Google Scholar 

  5. Zavaglia, M., Astolfi, L., Babiloni, F., Ursino, M.: A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. Journal of Neuroscience Methods 157, 317–329 (2006)

    Article  Google Scholar 

  6. Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics 73, 357–366 (1995)

    Article  MATH  Google Scholar 

  7. David, O., Friston, K.J.: A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20, 1743–1755 (2003)

    Article  Google Scholar 

  8. David, O., Cosmelli, D., Friston, K.J.: Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage 21, 659–673 (2004)

    Article  Google Scholar 

  9. van der Merwe, R., Wan, E.A.: The square-root unscented Kalman filter for state and parameter-estimation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6, pp. 3461–3464 (2001)

    Google Scholar 

  10. Hu, Z.H., Shi, P.C.: Regularity and Complexity of Human Electroencephalogram Dynamics: Applications to Diagnosis of Alzheimers Disease. In: IEEE International Conference on Pattern Recognition (ICPR), vol. 3, pp. 245–248 (2006)

    Google Scholar 

  11. Jansen, B.H., Kavaipatti, A.B., Markusson, O.: Evoked potential enhancement using a neurophysiologically-based model. Method Inform. Med. 40, 338–345 (2001)

    Google Scholar 

  12. Valdes, P.A., Jimenez, J.C., Riera, J., Biscay, R., Ozaki, T.: Nonlinear EEG analysis based on a nerual mass model. Biological Cybernetics 81, 415–424 (1999)

    Article  MATH  Google Scholar 

  13. Ponten, S.C., Daffertshofer, A., Hillebrand, A., Stam, C.J.: The relationship between structural and functional connectivity: Graph theoretical analysis of an EEG neural mass model. NeuroImage (2009), doi:10.1016/j.neuroimage.2009.10.049

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, X., Hu, Z., Shi, P. (2010). Neural Mass Model Driven Nonlinear EEG Analysis. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15699-1_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15698-4

  • Online ISBN: 978-3-642-15699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics