An Interval Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-Validation and Akaike Test | SpringerLink
Skip to main content

An Interval Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-Validation and Akaike Test

  • Chapter
Soft Computing for Intelligent Control and Mobile Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 318))

  • 1676 Accesses

Abstract

A novel homogeneous integration strategy of an interval type-2 fuzzy inference system (IT2FIS) with Takagi-Sugeno-Kang reasoning (TSK IT2FIS) is presented. This TSK IT2FIS is represented as an adaptive neural network (NN) with hybrid learning (IT2FNN:BP+RLS) in order to automatically generate an interval type-2 fuzzy logic system (TSK IT2FLS). Consequent parameters are updated with recursive least-square (RLS) algorithm; antecedent parameters with back-propagation (BP) algorithm. Mackey-Glass chaotic time series forecasting results are presented ((=17, 30, 100) with different signal noise ratio (SNR). Soundness for uncertainty, adaptability and learning and generalization capabilities is shown using 10-fold Cross Validation, Akaike Information Criteria (AIC) and F-Test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  2. Klir, G.J., Wierman, M.J.: Uncertainty-Based Information: Elements of Generalized Information Theory. Physica-Verlag / Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Davis, T.J., Keller, C.P.: Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: slope stability prediction. International Journal of Geographical Information Science 11(5), 409–434 (1997)

    Article  Google Scholar 

  4. Gil Aluja, J.: Elements for a theory of decision in uncertainty. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  5. Hagras, F., Roberts, H., Callaghan, D.: A Type-2 Fuzzy Based System for Handling the Uncertainties in Group Decisions for Ranking Job Applicants within Human Resources Systems. In: FUZZ-IEEE 2008, Hong Kong (June 2008)

    Google Scholar 

  6. Hwang, C., Rhee, F.C.-H.: Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy. IEEE Transaction on Fuzzy System 15(1), 107–120 (2007)

    Article  Google Scholar 

  7. Hirota, K., Pedrycz, W.: Knowledge-based networks in classification problems. Fuzzy Sets and Systems 51, 1–27 (1992)

    Article  MathSciNet  Google Scholar 

  8. Hirota, K., Pedrycz, W.: OR/AND neuron in modeling fuzzy set connectives. IEEE Transactions on Fuzzy Systems 2, 151–161 (1994)

    Article  MathSciNet  Google Scholar 

  9. Horikowa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Transactions on Neural Networks 3 (1992)

    Google Scholar 

  10. Chaoui, H., Gueaieb, W.: Type-2 Fuzzy Logic Control of a Flexible-Joint Manipulator. Journal Of Intelligent And Robotic Systems 51(2), 159–186 (2008)

    Article  Google Scholar 

  11. Wu, D., Tan, W.W.: A simplified type-2 fuzzy logic controller for real-time control. Isa Transactions 45(4), 503–516 (2006)

    Article  Google Scholar 

  12. Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Type-2 Fuzzy Logic theory and applications. In: Proceedings of Granular Computing 2007, Silicon Valley, CA, USA, November 2007, pp. 145–150 (2007)

    Google Scholar 

  13. Zeng, J., Liu, Z.-Q.: Type-2 fuzzy sets for pattern recognition: The state-of-the-art. Journal Uncertain System 1(3), 163–177 (2007)

    MathSciNet  Google Scholar 

  14. Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Information Sciences 177(10), 2023–2048 (2007)

    Article  Google Scholar 

  15. Singh, M., Srivastava, S., Gupta, J.R.P., Hanmandlu, M.: A new algorithm-based type-2 fuzzy controller for diabetic patient. International Journal of Biomedical Engineering And Technology 1(1), 18–40 (2007)

    Article  Google Scholar 

  16. Astudillo, L., Castillo, O., Melin, P., Alanis, A., Soria, J., Aguilar, L.: Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic. Journal of Engineering Letters 13(2), 93–97 (2006)

    Google Scholar 

  17. Baguley, P., Page, T., Koliza, V., Maropoulos, P.: Time to market prediction using type-2 fuzzy sets. Journal of Manufacturing Technology Management 17(4), 513–520 (2006)

    Article  Google Scholar 

  18. Zeng, J., Liu, Z.-Q.: Type-2 Fuzzy Hidden Markov Models and Their Application to Speech Recognition. IEEE Transactions On Fuzzy Systems 14(3), 454–467 (2006)

    Article  MathSciNet  Google Scholar 

  19. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, NJ (2001)

    MATH  Google Scholar 

  20. Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inform. Sci. 120, 89–111 (1999)

    Article  MATH  Google Scholar 

  21. Wu, D., Mendel, J.M.: A Vector Similarity Measure for Interval Type-2 Fuzzy Sets and Type-1 Fuzzy Sets. Information Sciences 178, 381–402 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lee, C.-H., Lin, Y.-C.: Type-2 Fuzzy Neuro System Via Input-to-State-Stability Approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 317–327. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Lin, Y.-C., Lee, C.-H.: System Identification and Adaptive Filter Using a Novel Fuzzy Neuro System. International Journal of Computational Cognition 5(1) (March 2007)

    Google Scholar 

  24. Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 Fuzzy Neural Network Systems and Learning. International Journal of Computational Cognition 1(4), 79–90 (2003)

    Google Scholar 

  25. Wang, C.H., Cheng, C.S., Lee, T.-T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics 34(3), 1462–1477 (2004)

    Article  Google Scholar 

  26. Hagras, H.: Comments on Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN). IEEE Transactions on Systems Man And Cybernetics Part B 36(5), 1206–1209 (2006)

    Article  Google Scholar 

  27. Mendez, G.M., Leduc, L.: Hybrid Learning Algorithm for Interval Type-2 Fuzzy Logic Systems. Control and Intelligent Systems Journal, Special Issue on Nonlinear Adaptive PID Control Part 2 34(3), 206–215 (2006)

    Google Scholar 

  28. Own, C.-M., Tsai, H.-H., Yu, P.-T., Lee, Y.-J.: Adaptive type-2 fuzzy median filter design for removal of impulse noise. Imaging Science 54(1), 3–18 (2006)

    Article  Google Scholar 

  29. Cao, X.-Q., Zeng, J., Yan, H.: Modeling Uncertain Speech Sequences Using Type-2 Fuzzy Hidden Markov Models. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 315–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht (1996)

    MATH  Google Scholar 

  31. Wang, C.H., Liu, H.L., Lin, C.T.: Dynamic optimal Learning rate of A Certain Class of Fuzzy Neural Networks and Its Applications with Genetic Algorithm. IEEE Trans. Syst. Man, Cybern. 31(3), 467–475 (2001)

    Article  Google Scholar 

  32. Wu, D., Wan Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Engineering Applications of Artificial Intelligence 19(8), 829–841 (2006)

    Article  Google Scholar 

  33. Ascia, G., Catania, V., Panno, D.: An Integrated Fuzzy-GA Approach for Buffer Management. IEEE Trans. Fuzzy Syst. 14(4), 528–541 (2006)

    Article  Google Scholar 

  34. Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary Algorithms + Domain Knowledge = Real-World Evolutionary Computation. IEEE Trans. Evol Comput. 10(3), 256–280 (2006)

    Article  Google Scholar 

  35. Chiou, Y.-C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152(3), 617–635 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  37. Deb, K.: A population-based algorithm-generator for real-parameter optimization. Springer, Heidelberg (2005) (in press)

    Google Scholar 

  38. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, 260–270 (1995)

    Article  Google Scholar 

  39. Engelbrecht, A.P.: Fundamentals of computational swarm intelligence. John Wiley & Sons, Ltd., Chichester (2005)

    Google Scholar 

  40. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern. 23(3), 665–684 (1993)

    Article  MathSciNet  Google Scholar 

  41. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice-Hall, New York (1997)

    Google Scholar 

  42. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  43. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, NJ (2003)

    Google Scholar 

  44. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15, 116–132 (1985)

    MATH  Google Scholar 

  45. Zadeh, L.A.: Fuzzy Logic, Neural Neural Networks and Soft Computing. Comunications of the ACM 37(3), 77–84 (1994)

    Article  MathSciNet  Google Scholar 

  46. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  47. Zadeh, L.A.: Towards a generalized theory of uncertainty (GTU)–an outline. Information Sciences 172, 1–40 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zadeh, L.A., Kacprzyk, J. (eds.): Computing With Words in Information/Intelligent Systems, vol. 1 & 2. Physica-Verlag, New York (1999)

    Google Scholar 

  49. Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs (2002) ISBN 0-13-048434-2

    Google Scholar 

  50. Mackey, M.C., Glass, L.: Oscillation and Chaos in Physiological Control Systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  51. Ljung, L.: System Identification: Theory for the User, pp. 278–280. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  52. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on automatic control AC 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  53. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, pp. 214–216. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  54. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, pp. 341–342. Academic Press, London (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castro, J.R., Castillo, O., Melin, P., Mendoza, O., Rodríguez-Díaz, A. (2010). An Interval Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-Validation and Akaike Test. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15534-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15533-8

  • Online ISBN: 978-3-642-15534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics