Abstract
A novel homogeneous integration strategy of an interval type-2 fuzzy inference system (IT2FIS) with Takagi-Sugeno-Kang reasoning (TSK IT2FIS) is presented. This TSK IT2FIS is represented as an adaptive neural network (NN) with hybrid learning (IT2FNN:BP+RLS) in order to automatically generate an interval type-2 fuzzy logic system (TSK IT2FLS). Consequent parameters are updated with recursive least-square (RLS) algorithm; antecedent parameters with back-propagation (BP) algorithm. Mackey-Glass chaotic time series forecasting results are presented ((=17, 30, 100) with different signal noise ratio (SNR). Soundness for uncertainty, adaptability and learning and generalization capabilities is shown using 10-fold Cross Validation, Akaike Information Criteria (AIC) and F-Test.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs (1988)
Klir, G.J., Wierman, M.J.: Uncertainty-Based Information: Elements of Generalized Information Theory. Physica-Verlag / Springer, Heidelberg (1999)
Davis, T.J., Keller, C.P.: Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: slope stability prediction. International Journal of Geographical Information Science 11(5), 409–434 (1997)
Gil Aluja, J.: Elements for a theory of decision in uncertainty. Kluwer Academic Publishers, Boston (1999)
Hagras, F., Roberts, H., Callaghan, D.: A Type-2 Fuzzy Based System for Handling the Uncertainties in Group Decisions for Ranking Job Applicants within Human Resources Systems. In: FUZZ-IEEE 2008, Hong Kong (June 2008)
Hwang, C., Rhee, F.C.-H.: Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy. IEEE Transaction on Fuzzy System 15(1), 107–120 (2007)
Hirota, K., Pedrycz, W.: Knowledge-based networks in classification problems. Fuzzy Sets and Systems 51, 1–27 (1992)
Hirota, K., Pedrycz, W.: OR/AND neuron in modeling fuzzy set connectives. IEEE Transactions on Fuzzy Systems 2, 151–161 (1994)
Horikowa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Transactions on Neural Networks 3 (1992)
Chaoui, H., Gueaieb, W.: Type-2 Fuzzy Logic Control of a Flexible-Joint Manipulator. Journal Of Intelligent And Robotic Systems 51(2), 159–186 (2008)
Wu, D., Tan, W.W.: A simplified type-2 fuzzy logic controller for real-time control. Isa Transactions 45(4), 503–516 (2006)
Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Type-2 Fuzzy Logic theory and applications. In: Proceedings of Granular Computing 2007, Silicon Valley, CA, USA, November 2007, pp. 145–150 (2007)
Zeng, J., Liu, Z.-Q.: Type-2 fuzzy sets for pattern recognition: The state-of-the-art. Journal Uncertain System 1(3), 163–177 (2007)
Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Information Sciences 177(10), 2023–2048 (2007)
Singh, M., Srivastava, S., Gupta, J.R.P., Hanmandlu, M.: A new algorithm-based type-2 fuzzy controller for diabetic patient. International Journal of Biomedical Engineering And Technology 1(1), 18–40 (2007)
Astudillo, L., Castillo, O., Melin, P., Alanis, A., Soria, J., Aguilar, L.: Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic. Journal of Engineering Letters 13(2), 93–97 (2006)
Baguley, P., Page, T., Koliza, V., Maropoulos, P.: Time to market prediction using type-2 fuzzy sets. Journal of Manufacturing Technology Management 17(4), 513–520 (2006)
Zeng, J., Liu, Z.-Q.: Type-2 Fuzzy Hidden Markov Models and Their Application to Speech Recognition. IEEE Transactions On Fuzzy Systems 14(3), 454–467 (2006)
Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, NJ (2001)
Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inform. Sci. 120, 89–111 (1999)
Wu, D., Mendel, J.M.: A Vector Similarity Measure for Interval Type-2 Fuzzy Sets and Type-1 Fuzzy Sets. Information Sciences 178, 381–402 (2008)
Lee, C.-H., Lin, Y.-C.: Type-2 Fuzzy Neuro System Via Input-to-State-Stability Approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 317–327. Springer, Heidelberg (2007)
Lin, Y.-C., Lee, C.-H.: System Identification and Adaptive Filter Using a Novel Fuzzy Neuro System. International Journal of Computational Cognition 5(1) (March 2007)
Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 Fuzzy Neural Network Systems and Learning. International Journal of Computational Cognition 1(4), 79–90 (2003)
Wang, C.H., Cheng, C.S., Lee, T.-T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics 34(3), 1462–1477 (2004)
Hagras, H.: Comments on Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN). IEEE Transactions on Systems Man And Cybernetics Part B 36(5), 1206–1209 (2006)
Mendez, G.M., Leduc, L.: Hybrid Learning Algorithm for Interval Type-2 Fuzzy Logic Systems. Control and Intelligent Systems Journal, Special Issue on Nonlinear Adaptive PID Control Part 2 34(3), 206–215 (2006)
Own, C.-M., Tsai, H.-H., Yu, P.-T., Lee, Y.-J.: Adaptive type-2 fuzzy median filter design for removal of impulse noise. Imaging Science 54(1), 3–18 (2006)
Cao, X.-Q., Zeng, J., Yan, H.: Modeling Uncertain Speech Sequences Using Type-2 Fuzzy Hidden Markov Models. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 315–324. Springer, Heidelberg (2007)
Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht (1996)
Wang, C.H., Liu, H.L., Lin, C.T.: Dynamic optimal Learning rate of A Certain Class of Fuzzy Neural Networks and Its Applications with Genetic Algorithm. IEEE Trans. Syst. Man, Cybern. 31(3), 467–475 (2001)
Wu, D., Wan Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Engineering Applications of Artificial Intelligence 19(8), 829–841 (2006)
Ascia, G., Catania, V., Panno, D.: An Integrated Fuzzy-GA Approach for Buffer Management. IEEE Trans. Fuzzy Syst. 14(4), 528–541 (2006)
Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary Algorithms + Domain Knowledge = Real-World Evolutionary Computation. IEEE Trans. Evol Comput. 10(3), 256–280 (2006)
Chiou, Y.-C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152(3), 617–635 (2005)
Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (1997)
Deb, K.: A population-based algorithm-generator for real-parameter optimization. Springer, Heidelberg (2005) (in press)
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, 260–270 (1995)
Engelbrecht, A.P.: Fundamentals of computational swarm intelligence. John Wiley & Sons, Ltd., Chichester (2005)
Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern. 23(3), 665–684 (1993)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice-Hall, New York (1997)
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, NJ (2003)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15, 116–132 (1985)
Zadeh, L.A.: Fuzzy Logic, Neural Neural Networks and Soft Computing. Comunications of the ACM 37(3), 77–84 (1994)
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)
Zadeh, L.A.: Towards a generalized theory of uncertainty (GTU)–an outline. Information Sciences 172, 1–40 (2005)
Zadeh, L.A., Kacprzyk, J. (eds.): Computing With Words in Information/Intelligent Systems, vol. 1 & 2. Physica-Verlag, New York (1999)
Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs (2002) ISBN 0-13-048434-2
Mackey, M.C., Glass, L.: Oscillation and Chaos in Physiological Control Systems. Science 197, 287–289 (1977)
Ljung, L.: System Identification: Theory for the User, pp. 278–280. Prentice-Hall, Englewood Cliffs (1987)
Akaike, H.: A new look at the statistical model identification. IEEE Transactions on automatic control AC 19, 716–723 (1974)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, pp. 214–216. Springer, Heidelberg (2001)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, pp. 341–342. Academic Press, London (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Castro, J.R., Castillo, O., Melin, P., Mendoza, O., Rodríguez-Díaz, A. (2010). An Interval Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-Validation and Akaike Test. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-15534-5_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15533-8
Online ISBN: 978-3-642-15534-5
eBook Packages: EngineeringEngineering (R0)