Submodular Secretary Problem and Extensions | SpringerLink
Skip to main content

Abstract

Online auction is the essence of many modern markets, particularly networked markets, in which information about goods, agents, and outcomes is revealed over a period of time, and the agents must make irrevocable decisions without knowing future information. Optimal stopping theory, especially the classic secretary problem, is a powerful tool for analyzing such online scenarios which generally require optimizing an objective function over the input. The secretary problem and its generalization the multiple-choice secretary problem were under a thorough study in the literature. In this paper, we consider a very general setting of the latter problem called the submodular secretary problem, in which the goal is to select k secretaries so as to maximize the expectation of a (not necessarily monotone) submodular function which defines efficiency of the selected secretarial group based on their overlapping skills. We present the first constant-competitive algorithm for this case. In a more general setting in which selected secretaries should form an independent (feasible) set in each of l given matroids as well, we obtain an O(llog2 r)-competitive algorithm generalizing several previous results, where r is the maximum rank of the matroids. Another generalization is to consider l knapsack constraints (i.e., a knapsack constraint assigns a nonnegative cost to each secretary, and requires that the total cost of all the secretaries employed be no more than a budget value) instead of the matroid constraints, for which we present an O(l)-competitive algorithm. In a sharp contrast, we show for a more general setting of subadditive secretary problem, there is no \(\tilde o(\sqrt{n})\)-competitive algorithm and thus submodular functions are the most general functions to consider for constant-competitiveness in our setting. We complement this result by giving a matching \(O(\sqrt n)\)-competitive algorithm for the subadditive case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discrete Appl. Math. 93, 149–156 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary problems and generalizations. SIAM J. Discrete Math. 14, 1–27 (2001)

    Article  MathSciNet  Google Scholar 

  3. Asadpour, A., Nazerzadeh, H., Saberi, A.: Stochastic submodular maximization. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 477–489. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized secretary problems. SIGecom Exch. 7, 1–11 (2008)

    Article  Google Scholar 

  6. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: SODA, pp. 434–443 (2007)

    Google Scholar 

  7. Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: The submodular secretary problem, Tech. Report TD-7UEP26, AT&T Labs–Research (July 2009)

    Google Scholar 

  8. Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: Submodular secretary problem and extensions, Tech. Report 2010-002, CSAIL, MIT (February 2010)

    Google Scholar 

  9. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Cornuejols, G., Fisher, M., Nemhauser, G.L.: On the uncapacitated location problem. In: Studies in Integer Programming (Proc. Workshop, Bonn. 1975). Ann. of Discrete Math., vol. 1, pp. 163–177. North-Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  11. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manage. Sci. 23, 789–810 (1976/1977)

    Google Scholar 

  12. Dynkin, E.B.: The optimum choice of the instant for stopping a markov process. Sov. Math. Dokl. 4, 627–629 (1963)

    MATH  Google Scholar 

  13. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  14. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feige, U.: On maximizing welfare when utility functions are subadditive. In: STOC, pp. 41–50 (2006)

    Google Scholar 

  16. Feige, U., Goemans, M.X.: Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT. In: ISTCS, p. 182 (1995)

    Google Scholar 

  17. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: FOCS, pp. 461–471 (2007)

    Google Scholar 

  18. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions. II. Math. Prog. Stud., 73–87 (1978), Polyhedral combinatorics

    Google Scholar 

  19. Freeman, P.R.: The secretary problem and its extensions: a review. Internat. Statist. Rev. 51, 189–206 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gilbert, J.P., Mosteller, F.: Recognizing the maximum of a sequence. J. Amer. Statist. Assoc. 61, 35–73 (1966)

    Article  MathSciNet  Google Scholar 

  21. Glasser, K.S., Holzsager, R., Barron, A.: The d choice secretary problem. Comm. Statist. C—Sequential Anal. 2, 177–199 (1983)

    MATH  MathSciNet  Google Scholar 

  22. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995)

    MATH  MathSciNet  Google Scholar 

  23. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms (2010), http://www.cs.cmu.edu/alroth/submodularsecretaries.html

  24. Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions. In: EC, pp. 71–80 (2004)

    Google Scholar 

  25. Hajiaghayi, M.T., Kleinberg, R., Sandholm, T.: Automated online mechanism design and prophet inequalities. In: AAAI, pp. 58–65 (2007)

    Google Scholar 

  26. Halperin, E., Zwick, U.: Combinatorial approximation algorithms for the maximum directed cut problem. In: SODA, pp. 1–7 (2001)

    Google Scholar 

  27. Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set packing. Computational Complexity 15, 20–39 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Immorlica, N., Kleinberg, R.D., Mahdian, M.: Secretary problems with competing employers. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 389–400. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for max-cut and other 2-variable csps? In: FOCS, pp. 146–154 (2004)

    Google Scholar 

  32. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70, 39–45 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. In: SODA, pp. 630–631 (2005)

    Google Scholar 

  34. Lee, J., Mirrokni, V., Nagarajan, V., Sviridenko, M.: Maximizing non-monotone submodular functions under matroid and knapsack constraints. In: STOC, pp. 323–332 (2009)

    Google Scholar 

  35. Lovász, L.: Submodular functions and convexity. In: Mathematical programming: the state of the art (Bonn, 1982), pp. 235–257. Springer, Berlin (1982)

    Google Scholar 

  36. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. I. Math. Program. 14, 265–294 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  37. Queyranne, M.: A combinatorial algorithm for minimizing symmetric submodular functions. In: SODA, pp. 98–101 (1995)

    Google Scholar 

  38. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Vanderbei, R.J.: The optimal choice of a subset of a population. Math. Oper. Res. 5, 481–486 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  41. Vondrák, J.: Symmetry and approximability of submodular maximization problems. In: FOCS (2009)

    Google Scholar 

  42. Wilson, J.G.: Optimal choice and assignment of the best m of n randomly arriving items. Stochastic Process. Appl. 39, 325–343 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bateni, M., Hajiaghayi, M., Zadimoghaddam, M. (2010). Submodular Secretary Problem and Extensions. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics