Abstract
Group signatures is a powerful primitive with many practical applications, allowing a group of parties to share a signature functionality, while protecting the anonymity of the signer. However, despite intensive research in the past years, there is still no fully satisfactory implementation of group signatures in the plain model. The schemes proposed so far are either too inefficient to be used in practice, or their security is based on rather strong, non-standard assumptions.
We observe that for some applications the full power of group signatures is not necessary. For example, a group signature can be verified by any third party, while in many applications such a universal verifiability is not needed or even not desired. Motivated by this observation, we propose a notion of group message authentication, which can be viewed as a relaxation of group signatures. Group message authentication enjoys the group-oriented features of group signatures, while dropping some of the features which are not needed in many real-life scenarios. An example application of group message authentication is an implementation of an anonymous credit card.
We present a generic implementation of group message authentication, and also propose an efficient concrete implementation based on standard assumptions, namely strong RSA and DDH.
Work done in part at ETH Zurich. The full version of this paper is available on Cryptology ePrint Archive [29].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385 (2005), http://eprint.iacr.org/
Ateniese, G., Tsudik, G.: Some open issues and directions in group signatures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)
Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)
Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)
Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)
Canetti, R., Goldreich, O., Halevi, S.: The random oracle model revisited. In: 30th ACM STOC, pp. 209–218 (1998)
Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000)
Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)
Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: 6th ACM CCS, pp. 46–51 (1999)
Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)
Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC, pp. 409–418. ACM Press, New York (1998)
Fiat, A., Shamir, A.: How to prove yourself. practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–189. Springer, Heidelberg (1987)
Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)
Goldreich, O.: A uniform-complexity treatment of encryption and zeroknowledge. Journal of Cryptology 6(1), 21–53 (1993)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)
Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)
Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. Cryptology ePrint Archive, Report 2007/015 (2007), http://eprint.iacr.org/2007/015
Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)
Kim, S., Park, S., Won, D.: Group signatures for hierarchical multigroups. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 273–281. Springer, Heidelberg (1998)
Laur, S., Pasini, S.: Sas-based group authentication and key agreement protocols. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 197–213. Springer, Heidelberg (2008)
Lucks, S.: A variant of the cramer-shoup cryptosystem for groups of unknown order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 27–45. Springer, Heidelberg (2002)
Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)
Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)
Przydatek, B., Wikström, D.: Group message authentication. Cryptology ePrint Archive (2010) (The full version of this paper), http://eprint.iacr.org/
Qin, B., Wu, Q., Susilo, W., Mu, Y.: Group decryption. Cryptology ePrint Archive, Report 2007/017 (2007), http://eprint.iacr.org/2007/017
Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)
Trolin, M., Wikström, D.: Hierarchical group signatures. Cryptology ePrint Archive, Report 2004/311 (2004), http://eprint.iacr.org/
Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 446–458. Springer, Heidelberg (2005) (Full Version [32])
Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
Wikström, D.: Designated confirmer signatures revisited. Cryptology ePrint Archive, Report 2006/123 (2006), http://eprint.iacr.org/2006/123
Wikström, D.: Designated confirmer signatures revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 342–361. Springer, Heidelberg (2007) (Full Version [35])
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Przydatek, B., Wikström, D. (2010). Group Message Authentication. In: Garay, J.A., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2010. Lecture Notes in Computer Science, vol 6280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15317-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-15317-4_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15316-7
Online ISBN: 978-3-642-15317-4
eBook Packages: Computer ScienceComputer Science (R0)