Group Message Authentication | SpringerLink
Skip to main content

Group Message Authentication

  • Conference paper
Security and Cryptography for Networks (SCN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6280))

Included in the following conference series:

Abstract

Group signatures is a powerful primitive with many practical applications, allowing a group of parties to share a signature functionality, while protecting the anonymity of the signer. However, despite intensive research in the past years, there is still no fully satisfactory implementation of group signatures in the plain model. The schemes proposed so far are either too inefficient to be used in practice, or their security is based on rather strong, non-standard assumptions.

We observe that for some applications the full power of group signatures is not necessary. For example, a group signature can be verified by any third party, while in many applications such a universal verifiability is not needed or even not desired. Motivated by this observation, we propose a notion of group message authentication, which can be viewed as a relaxation of group signatures. Group message authentication enjoys the group-oriented features of group signatures, while dropping some of the features which are not needed in many real-life scenarios. An example application of group message authentication is an implementation of an anonymous credit card.

We present a generic implementation of group message authentication, and also propose an efficient concrete implementation based on standard assumptions, namely strong RSA and DDH.

Work done in part at ETH Zurich. The full version of this paper is available on Cryptology ePrint Archive [29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385 (2005), http://eprint.iacr.org/

  2. Ateniese, G., Tsudik, G.: Some open issues and directions in group signatures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)

    Google Scholar 

  7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle model revisited. In: 30th ACM STOC, pp. 209–218 (1998)

    Google Scholar 

  8. Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  10. Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000)

    Google Scholar 

  11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Google Scholar 

  12. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: 6th ACM CCS, pp. 46–51 (1999)

    Google Scholar 

  13. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC, pp. 409–418. ACM Press, New York (1998)

    Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove yourself. practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–189. Springer, Heidelberg (1987)

    Google Scholar 

  16. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)

    Google Scholar 

  17. Goldreich, O.: A uniform-complexity treatment of encryption and zeroknowledge. Journal of Cryptology 6(1), 21–53 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)

    Google Scholar 

  21. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. Cryptology ePrint Archive, Report 2007/015 (2007), http://eprint.iacr.org/2007/015

  23. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)

    Google Scholar 

  24. Kim, S., Park, S., Won, D.: Group signatures for hierarchical multigroups. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 273–281. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  25. Laur, S., Pasini, S.: Sas-based group authentication and key agreement protocols. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 197–213. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Lucks, S.: A variant of the cramer-shoup cryptosystem for groups of unknown order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 27–45. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  28. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Przydatek, B., Wikström, D.: Group message authentication. Cryptology ePrint Archive (2010) (The full version of this paper), http://eprint.iacr.org/

  30. Qin, B., Wu, Q., Susilo, W., Mu, Y.: Group decryption. Cryptology ePrint Archive, Report 2007/017 (2007), http://eprint.iacr.org/2007/017

  31. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  32. Trolin, M., Wikström, D.: Hierarchical group signatures. Cryptology ePrint Archive, Report 2004/311 (2004), http://eprint.iacr.org/

  33. Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 446–458. Springer, Heidelberg (2005) (Full Version [32])

    Google Scholar 

  34. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

    Google Scholar 

  35. Wikström, D.: Designated confirmer signatures revisited. Cryptology ePrint Archive, Report 2006/123 (2006), http://eprint.iacr.org/2006/123

  36. Wikström, D.: Designated confirmer signatures revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 342–361. Springer, Heidelberg (2007) (Full Version [35])

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Przydatek, B., Wikström, D. (2010). Group Message Authentication. In: Garay, J.A., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2010. Lecture Notes in Computer Science, vol 6280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15317-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15317-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15316-7

  • Online ISBN: 978-3-642-15317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics