An Efficient Algorithm for Reverse Furthest Neighbors Query with Metric Index | SpringerLink
Skip to main content

An Efficient Algorithm for Reverse Furthest Neighbors Query with Metric Index

  • Conference paper
Database and Expert Systems Applications (DEXA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6262))

Included in the following conference series:

Abstract

The variants of similarity queries have been widely studied in recent decade, such as k-nearest neighbors (k-NN), range query, reverse nearest neighbors (RNN), an so on. Nowadays, the reverse furthest neighbor (RFN) query is attracting more attention because of its applicability. Given an object set O and a query object q, the RFN query retrieves the objects of O, which take q as their furthest neighbor. Yao et al. proposed R-tree based algorithms to handle the RFN query using Voronoi diagrams and the convex hull property of dataset. However, computing the convex hull and executing range query on R-tree are very expensive on the fly. In this paper, we propose an efficient algorithm for RFN query with metric index. We also adapt the convex hull property to enhance the efficiency, but its computation is not on the fly. We select external pivots to construct metric indexes, and employ the triangle inequality to do efficient pruning by using the metric indexes. Experimental evaluations on both synthetic and real datasets are performed to confirm the efficiency and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  2. Grauman, K., Darrell, T.: Fast contour matching using approximate earth mover’s distance. In: CVPR, (1), pp. 220–227 (2004)

    Google Scholar 

  3. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2) (2008)

    Google Scholar 

  4. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)

    Google Scholar 

  5. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, symmetric multikey file structure. ACM Trans. Database Syst. 9(1), 38–71 (1984)

    Article  Google Scholar 

  6. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)

    Google Scholar 

  7. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, pp. 194–205 (1998)

    Google Scholar 

  8. Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In: ICDE, pp. 664–675 (2009)

    Google Scholar 

  9. Lian, X., 0002, L.C.: Similarity search in arbitrary subspaces under lp-norm. In: ICDE, pp. 317–326 (2008)

    Google Scholar 

  10. Skopal, T., Bustos, B.: On index-free similarity search in metric spaces. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 516–531. Springer, Heidelberg (2009)

    Google Scholar 

  11. Zhang, Z., Ooi, B.C., Parthasarathy, S., Tung, A.K.H.: Similarity search on bregman divergence: Towards non-metric indexing. PVLDB 2(1), 13–24 (2009)

    MATH  Google Scholar 

  12. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD Conference, pp. 71–79 (1995)

    Google Scholar 

  13. Cheung, K.L., Fu, A.W.C.: Enhanced nearest neighbour search on the r-tree. SIGMOD Record 27(3), 16–21 (1998)

    Article  Google Scholar 

  14. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

    Article  Google Scholar 

  15. Athitsos, V., Potamias, M., Papapetrou, P., Kollios, G.: Nearest neighbor retrieval using distance-based hashing. In: ICDE, pp. 327–336 (2008)

    Google Scholar 

  16. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest neighbor search. In: SIGMOD Conference, pp. 563–576 (2009)

    Google Scholar 

  17. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. In: SIGMOD Conference, pp. 201–212 (2000)

    Google Scholar 

  18. Yang, C., Lin, K.I.: An index structure for efficient reverse nearest neighbor queries. In: ICDE, pp. 485–492 (2001)

    Google Scholar 

  19. Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of influence sets in frequently updated databases. In: VLDB, pp. 99–108 (2001)

    Google Scholar 

  20. Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High dimensional reverse nearest neighbor queries. In: CIKM, pp. 91–98 (2003)

    Google Scholar 

  21. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality. In: VLDB, pp. 744–755 (2004)

    Google Scholar 

  22. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In: SIGMOD Conference, pp. 515–526 (2006)

    Google Scholar 

  23. Tao, Y., Papadias, D., Lian, X., Xiao, X.: Multidimensional reverse nn search. VLDB J. 16(3), 293–316 (2007)

    Article  Google Scholar 

  24. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Finch: evaluating reverse k-nearest-neighbor queries on location data. PVLDB 1(1), 1056–1067 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Chen, H., Furuse, K., Kitagawa, H. (2010). An Efficient Algorithm for Reverse Furthest Neighbors Query with Metric Index . In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds) Database and Expert Systems Applications. DEXA 2010. Lecture Notes in Computer Science, vol 6262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15251-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15251-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15250-4

  • Online ISBN: 978-3-642-15251-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics