Counting Minimum (s,t)-Cuts in Weighted Planar Graphs in Polynomial Time | SpringerLink
Skip to main content

Counting Minimum (s,t)-Cuts in Weighted Planar Graphs in Polynomial Time

  • Conference paper
Mathematical Foundations of Computer Science 2010 (MFCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6281))

  • 974 Accesses

Abstract

We give an O(nd + nlogn) algorithm computing the number of minimum (s,t)-cuts in weighted planar graphs, where n is the number of vertices and d is the length of the shortest s-t path in the corresponding unweighted graph. Previously, Ball and Provan gave a polynomial-time algorithm for unweighted graphs with both s and t lying on the outer face. Our results hold for all locations of s and t and weighted graphs, and have direct applications in image segmentation and other computer vision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ball, M.O., Provan, J.S.: Calculating Bounds on Reachability and Connectnedness in Stochastic Networks. Networks 13, 253–278 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ball, M.O., Provan, J.S.: Computing Network Reliability in Time Polynomial in the Number of Cuts. Operations Research 32(3), 516–526 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borradaile, G., Klein, P.: An O(n logn) algorithm for maximum st-flow in a directed planar graph. Journal of the ACM 56(2) (2009)

    Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimisation via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1222–1239 (2001)

    Article  Google Scholar 

  6. Colbourn, C.J.: Combinatorial aspects of network reliability. Annals of Operations Research 33(1), 1–15 (2005)

    Article  MathSciNet  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    MATH  MathSciNet  Google Scholar 

  9. Geman, D., Geman, S.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. Journal of the ACM (JACM) 35(4), 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. Journal of the Association for Computing Machinery 21(4), 549–568 (1974)

    MATH  MathSciNet  Google Scholar 

  12. Itai, A., Shiloach, Y.: Maximum Flow in Planar Networks. SIAM J. Comput. 8(2), 135–150 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Janiga, L., Koubek, V.: Minimum Cut in Directed Planar Networks. Kybernetika 28(1), 37–49 (1992)

    MATH  MathSciNet  Google Scholar 

  14. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43(2-3), 169–188 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karger, D.R.: A Randomized Fully Polynomial Time Approximation Scheme for the All-Terminal Network Reliability Problem. SIAM J. Comput. 29(2), 492–514 (1999)

    Article  MathSciNet  Google Scholar 

  16. Kleinberg, J., Tardos, É.: Algorithm Design. Addison Wesley, Reading (2005)

    Google Scholar 

  17. Nagamochi, H., Sun, Z., Ibaraki, T.: Counting the number of minimum cuts in undirected multigraphs. IEEE Transactions on Reliability 40(5), 610–614 (1991)

    Article  MATH  Google Scholar 

  18. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ramanathan, A., Colbourn, C.J.: Counting almost minimum cutsets with reliability applications. Mathematical Programming 39(3), 253–261 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Reif, J.H.: Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM Journal on Computing 12, 71–81 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezáková, I., Friedlander, A.J. (2010). Counting Minimum (s,t)-Cuts in Weighted Planar Graphs in Polynomial Time. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15155-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15154-5

  • Online ISBN: 978-3-642-15155-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics