Comparative Study of Type-2 Fuzzy Inference System Optimization Based on the Uncertainty of Membership Functions | SpringerLink
Skip to main content

Comparative Study of Type-2 Fuzzy Inference System Optimization Based on the Uncertainty of Membership Functions

  • Chapter
Soft Computing for Recognition Based on Biometrics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 312))

Abstract

A comparative study of type-2 fuzzy inference systems optimization as an integration method of Modular Neural Networks (MNNs) is presented. The optimization method for type-2 fuzzy systems is based on the footprint of uncertainty (FOU) of the membership functions. We use different benchmark problems to test the optimization method for the fuzzy systems. First, we tested the methodology by manually incrementing the percentage in the FOU, later we apply a Genetic Algorithm to find the optimal type-2 fuzzy system. We show the comparative results obtained for the benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarado-Verdugo, J.M.: Reconocimiento de la persona por medio de su rostro y huella utilizando redes neuronales modulares y la transformada wavelet, Instituto Tecnológico de Tijuana (2006)

    Google Scholar 

  2. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Heidelberg (2006)

    Google Scholar 

  3. Castro, J.R.: Tutorial Type-2 Fuzzy Logic: theory and applications., Universidad Autónoma de Baja California-Instituto Tecnológico de Tijuana (October 9, 2006), http://www.hafsamx.org/cis-chmexico/seminar06/tutorial.pdf

  4. Chen, K., Wang, L.: Trends in Neural Computation. Studies in Computational Intelligence, vol. 35, pp. 339–341. Springer, Heidelberg

    Google Scholar 

  5. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy systems, Evolutionary Tuning and learning of Fuzzy Knowledge Bases. In: Advances in Fuzzy Systems-Applications and Theory, vol. 19. World Scientific, Singapore

    Google Scholar 

  6. Hidalgo, D., Melin, P., Castillo, O.: Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and its Optimization with Genetic Algorithms. Journal of Automation, Mobile Robotics & Intelligent Systems 2(1) (2008) ISSN 1897-8649

    Google Scholar 

  7. Hidalgo, D., Castillo, O., Melin, P.: Interval type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. International Journal of Biometrics 1(1), 114–128 (2008)

    Article  Google Scholar 

  8. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  9. Karnik, N., Mendel, J.M.: Operations on type-2 fuzzy sets. Signal and Image Processing Institute, Department of Electrical Engineering-Systems. University of Southern California, Los Angeles (2000)

    Google Scholar 

  10. Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms, Concepts and Designs. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  11. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems. Studies in Fuzziness and Soft Computing (Hardcover - April 29, 2005)

    Google Scholar 

  12. Melin, P., Castillo, O., Gómez, E., Kacprzyk, J., Pedrycz, W.: Analysis and Design of Intelligent Systems Using Soft Computing Techniques. In: Advances in Soft Computing, vol. 41. Springer, Heidelberg (2007)

    Google Scholar 

  13. Melin, P., Castillo, O., Gómez, E., Kacprzyk, J.: Analysis and Design of Intelligent Systems using Soft Computing Techniques. In: Advances in Soft Computing (Hardcover - July 11, 2007)

    Google Scholar 

  14. Mendel, J.M.: UNCERTAIN Rule-Based Fuzzy Logic Systems, Introduction and New Directions. Prentice Hall, Englewood Cliffs (2001)

    MATH  Google Scholar 

  15. Mendel, J.M.: Uncertainty: General Discussions, Article is provided courtesy of Prentice Hall, By Jerry Mendel, May 11 (2001), http://www.informit.com/articles/article.asp?p=21313

  16. Mendel, J.M.: Why We Need Type-2 Fuzzy Logic Sys-tems? Article provided courtesy of Prentice Hall, By Jerry Mendel, May 11 (2001), http://www.informit.com/articles/article.asp?p=21312&rl=1

  17. Mendel, J.M., Bob-John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10(2) (April 2002)

    Google Scholar 

  18. Mendoza, O., Melin, P., Castillo, O., Licea, P.: Type-2 Fuzzy Logic for Improving Training Data and Response Integration in Modular Neural Networks for Image Recognition. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 604–612. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Mendoza, O., Melin, P., Castillo, O., Licea, P.: Modular Neural Networks and Type-2 Fuzzy Lo- gic for Face Recognition. In: Reformat, M. (ed.) Proceedings of NAFIPS 2007, San Diego, June 2007, vol. (1), IEEE, Los Alamitos (2007) (pages CD Rom)

    Google Scholar 

  20. Ramos-Gaxiola, J.: Redes Neuronales Aplicadas a la Identificación de Locutor Mediante Voz Uti lizando Extracción de Características., Instituto Tecnológico de Tijuana (2006)

    Google Scholar 

  21. Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks with Type-2 Fuzzy Logic for Biometric Systems. In: Melin, P., et al. (eds.) Analysis and Design of Intelligent Systems using Soft Computing Techniques, 1st edn. Studies in Fuzziness and Soft Computing, vol. 1(1), pp. 5–15. Springer, Germany (2007)

    Google Scholar 

  22. Urias, J., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural Networks using Interval Type-2 Fuzzy Logic. In: FUZZ-IEEE 2007, London, UK, July 2007. FUZZ, vol. (1), pp. 247–252. IEEE, Los Alamitos (2007)

    Google Scholar 

  23. Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A New Method for Response Integration in Modular Neural Networks Using Type-2 Fuzzy Logic for Biometric Systems. In: The 2007 Inter- national Joint Conference on Neural Networks, IJCNN 2007 Conference Proceedings, Orlando, Florida, USA, August 12-17. IEEE, Los Alamitos (2007)

    Google Scholar 

  24. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 4(2), 103 (1996)

    Article  MathSciNet  Google Scholar 

  25. Zadeh, L.A.: Knowledge representation in Fuzzy Logic. IEEE Transactions on knowledge data engineering 1, 89 (1989)

    Article  Google Scholar 

  26. Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998)

    Google Scholar 

  27. Zadeh, L.A.: Soft Computing and Fuzzy Logic. IEEE Software 11(6), 48–56 (1994)

    Article  Google Scholar 

  28. Zadeh, L.A., Bernadette, B.M., Ronald, R.Y.: Fuzzy Logic and Soft Computing. In: Advances in Fuzzy Systems-Applications and Theory, Septiembre 1995, vol. 4 (1995), ISBN:978-981-02-2345-8, 981-02-2345-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hidalgo, D., Melin, P., Castillo, O., Licea, G. (2010). Comparative Study of Type-2 Fuzzy Inference System Optimization Based on the Uncertainty of Membership Functions. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics. Studies in Computational Intelligence, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15111-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15111-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15110-1

  • Online ISBN: 978-3-642-15111-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics