ASMs and Operational Algorithmic Completeness of Lambda Calculus | SpringerLink
Skip to main content

ASMs and Operational Algorithmic Completeness of Lambda Calculus

  • Chapter
Fields of Logic and Computation

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6300))

  • 786 Accesses

Abstract

We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family.

The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines.

This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atrubin, A.J.: A One-Dimensional Real-Time Iterative Multiplier. Trans. on Electronic Computers EC 14(3), 394–399 (1965)

    Article  Google Scholar 

  2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  3. Barendregt, H.P.: The Lambda calculus. Its syntax and semantics. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  4. Barendregt, H., Statman, R.: Böhm’s Theorem, Church’s Delta, Numeral Systems, and Ershov Morphisms. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 40–54. Springer, Heidelberg (2005)

    Google Scholar 

  5. Biedl, T., Buss, J.F., Demaine, E.D., Demaine, M.L., Hajiaghayi, M., Vinaĭ, T.: Palindrome recognition using a multidimensional tape. Theoretical Computer Science 302(1-3), 475–480 (2003)

    Google Scholar 

  6. Börger, E.: The Origins and the Development of the ASM Method for High Level System Design and Analysis. Journal of Universal Computer Science 8(1), 2–74 (2002)

    Google Scholar 

  7. Church, A., Rosser, J.B.: Some properties of conversion. Trans. Amer. Math. Soc. 39, 472–482 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  8. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  9. Curry, H., Feys, R.: Combinatory logic, vol. I. North-Holland, Amsterdam (1958)

    MATH  Google Scholar 

  10. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof of Church’s Thesis. Bulletin. of Symbolic Logic 14(3), 299–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gurevich, Y.: Reconsidering Turing’s Thesis: towards more realistic semantics of programs. Technical Report CRL-TR-38-84, EEC Department. University of Michigan (1984)

    Google Scholar 

  12. Gurevich, Y.: A new Thesis. Abstracts, American Math. Soc., Providence (1985)

    Google Scholar 

  13. Gurevich, Y.: Evolving Algebras: An Introductory Tutorial. Bulletin of the European Association for Theoretical Computer Science 43, 264–284 (1991); Reprinted in Current Trends in Theoretical Computer Science, pp. 266–269. World Scientific, Singapore (1993)

    Google Scholar 

  14. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Specification and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

    Google Scholar 

  15. Gurevich, Y.: May 1997 Draft of the ASM Guide. Tech. Report CSE-TR-336-97, EECS Dept., University of Michigan (1997)

    Google Scholar 

  16. Gurevich, Y.: The Sequential ASM Thesis. Bulletin of the European Association for Theoretical Computer Science 67, 93–124 (1999); Reprinted in Current Trends in Theoretical Computer Science, pp. 363–392. World Scientific, Singapore (2001)

    Google Scholar 

  17. Gurevich, Y.: Sequential Abstract State Machines capture Sequential Algorithms. ACM Transactions on Computational Logic 1(1), 77–111 (2000)

    Article  MathSciNet  Google Scholar 

  18. Hennie, F.C.: One-tape off-line Turing machine complexity. Information and Computation 8, 553–578 (1965)

    MathSciNet  MATH  Google Scholar 

  19. Hankin, C.: Lambda calculi. In: A guide for computer scientists. Graduate Texts in Computer. Oxford University Press, Oxford (1994)

    Google Scholar 

  20. Kolmogorov, A.N.: On the definition of algorithm. Uspekhi Mat. Nauk. 13(4), 3–28 (1958); Translations Amer. Math. Soc. 29, 217–245 (1963)

    MathSciNet  MATH  Google Scholar 

  21. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley, Reading (1998)

    MATH  Google Scholar 

  22. Krivine, J.L.: A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation 20, 199–207 (2007)

    Article  MATH  Google Scholar 

  23. Mogensen, T.: Efficient Self-Interpretation in Lambda Calculus. J. of Functional Programming 2(3), 345–363 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Paul, W.: Kolmogorov complexity and lower bounds. In: Budach, L. (ed.) Second Int. Conf. on Fundamentals of Computation Theory, pp. 325–334. Akademie, Berlin (1979)

    Google Scholar 

  25. Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda-calculus. In: A Metamodel for Computation. Springer, Heidelberg (2004)

    Google Scholar 

  26. Statman, R.: Church’s Lambda Delta Calculus. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 293–307. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferbus-Zanda, M., Grigorieff, S. (2010). ASMs and Operational Algorithmic Completeness of Lambda Calculus. In: Blass, A., Dershowitz, N., Reisig, W. (eds) Fields of Logic and Computation. Lecture Notes in Computer Science, vol 6300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15025-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15025-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15024-1

  • Online ISBN: 978-3-642-15025-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics