Finding Spread Blockers in Dynamic Networks | SpringerLink
Skip to main content

Finding Spread Blockers in Dynamic Networks

  • Conference paper
Advances in Social Network Mining and Analysis (SNAKDD 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5498))

Included in the following conference series:

Abstract

Abstract. Social interactions are conduits for various processes spreading through a population, from rumors and opinions to behaviors and diseases. In the context of the spread of a disease or undesirable behavior, it is important to identify blockers: individuals that are most effective in stopping or slowing down the spread of a process through the population. This problem has so far resisted systematic algorithmic solutions. In an effort to formulate practical solutions, in this paper we ask: Are there structural network measures that are indicative of the best blockers in dynamic social networks? Our contribution is two-fold. First, we extend standard structural network measures to dynamic networks. Second, we compare the blocking ability of individuals in the order of ranking by the new dynamic measures. We found that overall, simple ranking according to a node’s static degree, or the dynamic version of a node’s degree, performed consistently well. Surprisingly the dynamic clustering coefficient seems to be a good indicator, while its static version performs worse than the random ranking. This provides simple practical and locally computable algorithms for identifying key blockers in a network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adibi, J.: Enron email dataset, http://www.isi.edu/~adibi/Enron/Enron.htm

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  3. Anthonisse, J.: The rush in a graph. Mathematische Centrum, Amsterdam (1971)

    Google Scholar 

  4. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. J. Comput. Syst. Sci. 72(6), 1077–1093 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework of characterizing the evolutionary behavior of interaction graphs. In: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2007)

    Google Scholar 

  6. Barabasi, A.L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications 311(3-4), 590–614 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berger, E.: Dynamic monopolies of constant size. J. Combin. Theory Series B 83, 191–200 (2001)

    Article  MATH  Google Scholar 

  8. Berger, N., Borgs, C., Chayes, J.T., Saberi, A.: On the spread of viruses on the internet. In: SODA 2005: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 301–310. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  9. Berger-Wolf, T., Hart, W., Saia, J.: Discrete sensor placement problems in distribution networks. Mathematical and Computer Modelling (2005)

    Google Scholar 

  10. Berry, J., Fleischer, L., Hart, W., Phillips, C., Watson, J.: Sensor placement in municipal water networks. Journal of Water Resources Planning and Management 131(3) (2005a)

    Google Scholar 

  11. Berry, J., Hart, W., Phillips, C., Uber, J.G., Watson, J.: Sensor placement in municipal water networks with temporal integer programming models. Journal of Water Resources Planning and Management 132(4), 218–224 (2006)

    Article  Google Scholar 

  12. Börner, K., Dall’Asta, L., Ke, W., Vespignani, A.: Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity, Special issue on Understanding Complex Systems 10(4), 57–67 (2005)

    Google Scholar 

  13. Börner, K., Maru, J., Goldstone, R.: The simultaneous evolution of author and paper networks. PNAS 101(suppl. 1), 5266–5273 (2004)

    Article  Google Scholar 

  14. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW7: Proceedings of the 7th International Conference on World Wide Web 7, pp. 107–117. Elsevier Science Publishers B. V., Amsterdam (1998)

    Google Scholar 

  15. Broido, A., Claffy, K.: Internet topology: connectivity of IP graphs. In: Proceedings of SPIE ITCom (2001)

    Google Scholar 

  16. Carley, K.: Communicating new ideas: The potential impact of information and telecommunication technology. Technology in Society 18(2), 219–230 (1996)

    Article  Google Scholar 

  17. Carreras, I., Miorandi, D., Canright, G., Engøo-Monsen, K.: Eigenvector centrality in highly partitioned mobile networks: Principles and applications. Studies in Computational Intelligence (SCI) 69, 123–145 (2007)

    Article  Google Scholar 

  18. Chen, L., Carley, K.: The impact of social networks in the propagation of computer viruses and countermeasures. IEEE Trasactions on Systems, Man and Cybernetics (forthcoming)

    Google Scholar 

  19. Chen, N.: On the approximability of influence in social networks. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1029–1037 (2008)

    Google Scholar 

  20. Clauset, A., Eagle, N.: Persistence and periodicity in a dynamic proximity network (unpublished manuscript)

    Google Scholar 

  21. Cohen, R., Havlin, S., ben Avraham, D.: Efficient immunization strategies for computer networks and populations. Physical Review Letters (2003)

    Google Scholar 

  22. Dezsö, Z., Barabási, A.-L.: Halting viruses in scale-free networks. Physical Review E 65(055103(R)) (2002)

    Google Scholar 

  23. Domingos, P.: Mining social networks for viral marketing. IEEE Intelligent Systems 20, 80–82 (2005)

    Google Scholar 

  24. Domingos, P., Richardson, M.: Mining the network value of customers. In: Seventh International Conference on Knowledge Discovery and Data Mining (2001)

    Google Scholar 

  25. Eagle, N., Pentland, A.: Reality mining: Sensing complex social systems. Journal of Personal and Ubiquitous Computing (2006)

    Google Scholar 

  26. Eubank, S., Guclu, H., Kumar, V., Marathe, M., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004) (supplement material)

    Article  Google Scholar 

  27. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA 2003: Proc., 14th ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, pp. 28–36. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  28. Feige, U., Mirrokni, V., Vondrák.: Maximizing non-monotone submodular functions. In: Foundations of Computer Science, FOCS (2007)

    Google Scholar 

  29. Fischhoff, I.R., Sundaresan, S.R., Cordingley, J., Larkin, H.M., Sellier, M.-J., Rubenstein, D.I.: Social relationships and reproductive state influence leadership roles in movements of plains zebra (Equus burchellii). Animal Behaviour 73(5), 825–831 (2007)

    Article  Google Scholar 

  30. Fischhoff, I.R., Sundaresan, S.R., Cordingley, J., Rubenstein, D.I.: Habitat use and movements of plains zebra (Equus burchelli) in response to predation danger from lions. Behavioral Ecology 18(4), 725–729 (2007)

    Article  Google Scholar 

  31. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  32. Freeman, L.C.: Centrality in social networks: I. conceptual clarification. Social Networks 1, 215–239 (1979)

    Article  Google Scholar 

  33. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 8271–8276 (2002)

    Article  MathSciNet  Google Scholar 

  34. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12(3), 211–223 (2001)

    Article  Google Scholar 

  35. Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance marketing theory development. Academy of Marketing Science Review (2001)

    Google Scholar 

  36. Granovetter, M.: The strength of weak ties. American J. Sociology 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  37. Granovetter, M.: Threshold models of collective behavior. American J. Sociology 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  38. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. In: WWW 2004: Proc. 13th Intl Conf on World Wide Web, pp. 491–501. ACM Press, New York (2004)

    Chapter  Google Scholar 

  39. Habiba, C.T., Berger-Wolf, T.Y.: Betweenness centrality in dynamic networks. Technical Report 2007-19, DIMACS (2007)

    Google Scholar 

  40. Holme, P.: Efficient local strategies for vaccination and network attack. Europhys. Lett. 68(6), 908–914 (2004)

    Article  Google Scholar 

  41. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Natural communities in large linked networks. In: Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp. 541–546 (2003)

    Google Scholar 

  42. Jordán, F., Benedek, J., Podani, Z.: Quantifying positional importance in food webs: A comparison of centrality indices. Ecological Modelling 205, 270–275 (2007)

    Article  Google Scholar 

  43. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (2003)

    Google Scholar 

  45. Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

    Google Scholar 

  46. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: EC 2006: Proceedings of the 7th ACM conference on Electronic commerce, pp. 228–237. ACM Press, New York (2006)

    Chapter  Google Scholar 

  47. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J.: Cost-effective outbreak detection in networks. In: Proc. 13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (2007)

    Google Scholar 

  48. Lewin, K.: Principles of Topological Psychology. McGraw Hill, New York (1936)

    Book  Google Scholar 

  49. Ley, M.: Digital bibliography & library project (DBLP) (December 2005); A digital copy of the databse has been provided by the author, http://dblp.uni-trier.de/

  50. Liljeros, F., Edling, C., Amaral, L.N.: Sexual networks: Implication for the transmission of sexually transmitted infection. Microbes and Infection (2003)

    Google Scholar 

  51. May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Physical Review E 64(066112) (2001)

    Google Scholar 

  52. Moody, J.: The importance of relationship timing for diffusion. Social Forces (2002)

    Google Scholar 

  53. Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 69(6), 066130 (2004)

    Google Scholar 

  54. Morris, M.: Epidemiology and social networks:modeling structured diffusion. Sociological Methods and Research 22(1), 99–126 (1993)

    Article  Google Scholar 

  55. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: The Annual ACM Symposium on Theory of Computing(STOC) (2007)

    Google Scholar 

  56. Newman, M.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  57. Newman, M.E.: Spread of epidemic disease on networks. Physical Review E 66(016128) (2002)

    Google Scholar 

  58. Newman, M.E.J.: Scientific collaboration networks. i. network construction and fundamental results. Physical Review E 64, 016131 (2001)

    Article  Google Scholar 

  59. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  60. Rogers, E.M.: Diffusion of Innovations, 5th edn. Simon & Shuster, Inc., New York (2003)

    Google Scholar 

  61. Rubenstein, D.I., Sundaresan, S., Fischhoff, I., Saltz, D.: Social networks in wild asses: Comparing patterns and processes among populations. In: Stubbe, A., Kaczensky, P., Samjaa, R., Wesche, K., Stubbe, M. (eds.) Exploration into the Biological Resources of Mongolia, vol. 10, pp. 159–176. Martin-Luther-University, Halle-Wittenberg (2007)

    Google Scholar 

  62. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  63. Sundaresan, S.R., Fischhoff, I.R., Dushoff, J., Rubenstein, D.I.: Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia 151, 140–149 (2007)

    Article  Google Scholar 

  64. Vredeveld, T., Lenstra, J.: On local search for the generalized graph coloring problem. Operations Research Letters 31, 28–34 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  65. Watts, D.: A simple model of global cascades on random networks. PNAS 99, 5766–5771 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  66. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  67. Young, H.P.: Innovation diffusion and population heterogeneity, Working paper (2006)

    Google Scholar 

  68. Zanette, D.H.: Dynamics of rumor propagation on small-world networks. Phys. Rev. E 65(4), 041908 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habiba, Yu, Y., Berger-Wolf, T.Y., Saia, J. (2010). Finding Spread Blockers in Dynamic Networks. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds) Advances in Social Network Mining and Analysis. SNAKDD 2008. Lecture Notes in Computer Science, vol 5498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14929-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14929-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14928-3

  • Online ISBN: 978-3-642-14929-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics