FDCM: A Fuzzy Dendritic Cell Method | SpringerLink
Skip to main content

FDCM: A Fuzzy Dendritic Cell Method

  • Conference paper
Artificial Immune Systems (ICARIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6209))

Included in the following conference series:

Abstract

An immune-inspired danger theory model based on dendritic cells (DCs) within the framework of fuzzy set theory is proposed in this paper. Our objective is to smooth the abrupt separation between normality (semi-mature) and abnormality (mature) using fuzzy set theory since we can neither identify a clear boundary between the two contexts nor quantify exactly what is meant by “semi-mature” or “mature”. In this model, the context of each object (DC) is described using linguistic variables. Fuzzy subsets and the corresponding membership functions describe these variables. A knowledge base, comprising rules, is built to support the fuzzy inference. The induction of the context of each object is diagnosed using a compositional rule of fuzzy inference. Experiments on real data sets show that by alleviating the crisp separation between the two contexts, our new approach which focuses on binary classification problems produces more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger Theory: The Link between AIS and IDS. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)

    Google Scholar 

  3. Ross, T.: Fuzzy Logic for Engineering Applications. McGraw-Hill Book Company, New York (1995)

    Google Scholar 

  4. UCI machine learning repository, http://archive.ics.uci.edu

  5. Zadeh, L.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zimmermann, J.: Fuzzy Set Theory and Its Applications. European Journal of Operational Research 1, 227–228 (1996)

    Google Scholar 

  7. Pedrycz, W., Zadeh, L.: Fuzzy Sets Engineering 1. IEEE Micro, 19–30 (1995)

    Google Scholar 

  8. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems 9(4), 506–515 (2001)

    Article  Google Scholar 

  9. Matzinger, P.: The Danger Model in its historical context. Scandinavian Journal of Immunology, 4–9 (2001)

    Google Scholar 

  10. Roberto, A., Myriam, D., Heitor, S., Alex, A.: An artificial immune system for fuzzy-rule induction in data mining. In: 8th Brazilian Symposium on Naturel Network, pp. 1011–1020 (2004)

    Google Scholar 

  11. Greensmith, J.: The Dendritic Cell Algorithm. PhD Thesis, University of Nottingham (2007)

    Google Scholar 

  12. Stibor, T.: On the appropriateness of negative selection for anomaly detection and network intrusion detection. PhD Thesis, Darmstadt University of Technology (2006)

    Google Scholar 

  13. Nauman, M., Muddassar, F.: A Sense of Danger: Dendritic Cells Inspired Artificial Immune System for MANET Security. In: Genetic and Evolutionary Computation Conference, pp. 102–109 (2007)

    Google Scholar 

  14. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 1–13 (1975)

    Google Scholar 

  15. Kyosev, Y., Peeva, K., Reinbach, I.: Max-Product Fuzzy Relational Equations as Inference Engine for Prediction of Textile Yarn Properties. In: 9th Fuzzy Days, pp. 18–20 (2006)

    Google Scholar 

  16. Mizumoto, M.: Fuzzy controls by product-sum gravity-method. Fuzzy Sets and Systems, c1.1–c1.4 (1990)

    Google Scholar 

  17. Van Broekhoven, E., De Baets, B.: Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy sets and systems, 904–918 (2006)

    Google Scholar 

  18. Lee, C.: Fuzzy logic in control systems: Fuzzy logic controller - Parts 1 and 2. IEEE Transactions on Systems, Man and Cybernetics, 404–435 (1990)

    Google Scholar 

  19. Gu, F., Greensmith, J., Aickelin, U.: Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 142–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Aickelin, U., Greensmith, J.: The Deterministic Dendritic Cell Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chelly, Z., Elouedi, Z. (2010). FDCM: A Fuzzy Dendritic Cell Method. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds) Artificial Immune Systems. ICARIS 2010. Lecture Notes in Computer Science, vol 6209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14547-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14547-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14546-9

  • Online ISBN: 978-3-642-14547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics