Axioms for Obligation and Robustness with Temporal Logic | SpringerLink
Skip to main content

Axioms for Obligation and Robustness with Temporal Logic

  • Conference paper
Deontic Logic in Computer Science (DEON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6181))

Included in the following conference series:

Abstract

RoCTL* was proposed to model and specify the robustness of reactive systems. RoCTL* extended CTL* with the addition of Obligatory and Robustly operators, which quantify over failure-free paths and paths with one more failure respectively. This paper gives an axiomatisation for all the operators of RoCTL* with the exception of the Until operator; this fragment is able to express similar contrary-to-duty obligations to the full RoCTL* logic. We call this formal system NORA, and give a completeness proof. We also consider the fragments of the language containing only path quantifiers (but where variables are dependent on histories). We examine semantic properties and potential axiomatisations for these fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. French, T., Mc Cabe-Dansted, J.C., Reynolds, M.: A temporal logic of robustness. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 193–205. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-74621-8_13

    Chapter  Google Scholar 

  2. Agotnes, T., van der Hoek, W., Wooldridge, M.: Logics for qualitative coalitional games. Logic Journal of IGPL 17(3), 299 (2009)

    Article  Google Scholar 

  3. Meyer, J., Wieringa, R., Dighum, F.: The role of deontic logic in the specification of information systems. Kluwer International Series In Engineering And Computer Science, pp. 71–116 (1998)

    Google Scholar 

  4. Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia Logica 57(1), 91–115 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. DeCew, J.W.: Conditional obligation and counterfactuals. Journal of Philosophical Logic 10(1), 55–72 (1981)

    Article  MathSciNet  Google Scholar 

  6. Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. Theoria 54(3), 175–199 (1988)

    Google Scholar 

  7. Broersen, J., van der Torre, L.: John Horty, agency and deontic logic. Artificial Intelligence and Law 11(1), 45–61 (2003)

    Article  Google Scholar 

  8. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3. Oxford University Press, Oxford (1987)

    Google Scholar 

  9. van der Torre, L.W.N., Tan, Y.: The temporal analysis of Chisholm’s paradox. In: Senator, T., Buchanan, B. (eds.) Proceedings of the Fourteenth National Conference on Artificial Intelligence and the Ninth Innovative Applications of Artificial Intelligence Conference, pp. 650–655. AAAI Press, Menlo Park (1998)

    Google Scholar 

  10. Smith, T.: Violation of norms. In: Proceedings of the 4th international conference on Artificial intelligence and law, pp. 60–65. ACM, New York (1993)

    Google Scholar 

  11. Mc Cabe-Dansted, J.C.: A Temporal Logic of Robustness. PhD thesis, The University of Western Australia (2010) (in preparation), http://dansted.co.cc/papers/Thesis_RoCTL.pdf

  12. Emerson, E., Sistla, A.: Deciding full branching time logic. Information and Control 61, 175–201 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Reynolds, M.: An axiomatization of full computation tree logic. The Journal of Symbolic Logic 66(3), 1011–1057 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Agotnes, T., Van Der Hoek, W., Wooldridge, M.: Robust normative systems and a logic of norm compliance. Logic Journal of IGPL 18(1), 4 (2010)

    Article  MATH  Google Scholar 

  15. Thomason: Deontic Logic as Founded on Tense Logic. Synthese Library, vol. 152, pp. 165–176. Springer, Heidelberg (1981)

    Google Scholar 

  16. Sayre-McCord, G.: Deontic logic and the priority of moral theory. Nous 20(2), 179–197 (1986)

    MathSciNet  Google Scholar 

  17. Zanardo, A.: Branching-time logic with quantification over branches: the point of view of modal logic. The Journal of Symbolic Logic 61(1), 1–39 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

French, T., McCabe-Dansted, J.C., Reynolds, M. (2010). Axioms for Obligation and Robustness with Temporal Logic. In: Governatori, G., Sartor, G. (eds) Deontic Logic in Computer Science. DEON 2010. Lecture Notes in Computer Science(), vol 6181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14183-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14183-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14182-9

  • Online ISBN: 978-3-642-14183-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics