Abstract
We propose a normal modal deontic logic based on a dyadic operator, similar in structure to the temporal “until”. By bringing significant expressiveness to the logic, it allows both the definition of a monadic desirability operator similar to the SDL obligation, and the expression of the relative level of desirability of target formulae. The interpretation of this logic on a linear structure of worlds ordered by desirability makes its semantics more intuitive and concrete than the SDL deontic accessibility relation. We also show that the core modality of the logic permits to represent the Chisholm and Forrester paradoxes of deontic logic in a more precise way, which does not lead to inconsistencies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)
Ryu, Y.U.: Relativized deontic modalities for contractual obligations in formal business communication. In: Proceedings of the 30th Hawaii International Conference on System Sciences (HICCS’97), p. 485. IEEE Computer Society, Washington (1997)
Hansson, B.: An analysis of some deontic logics. Nôus 3, 373–398 (1969)
Prakken, H., Sergot, M.J.: Dyadic deontic logics and contrary-to-duty obligations. Synthese Library 263, 223–262 (1997)
Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on the Foundations of Computer Science (FOCS-77), pp. 46–57. IEEE Computer Society Press, Providence (1977)
Chisholm, R.M.: Contrary-to-duties imperatives and deontic logic. Analysis 24, 33–36 (1963)
Forrester, J.W.: Gentle murderer, or the adverbial samaritan. Journal of Philosophy 81, 193–196 (1984)
Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California at Los Angeles (1968)
Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press, Cambridge (1980)
Reynolds, M.: The complexity of the temporal logic with until over general linear time. Journal of Computer and System Sciences 66(2), 393–426 (2003)
Ladner, R.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal of Computing 6, 467–480 (1977)
Ross, A.: Imperatives and logic. Theoria, 53–71 (1941)
Prior, A.N.: The paradoxes of derived obligation. Mind 63, 64–65 (1954)
Prior, A.N.: Escapism. In: Essays in Moral Philosophy, pp. 135–146. University of Washington Press, Seattle (1958)
Lemmon, E.J.: Moral dilemmas. Philosophical Review 71, 139–158 (1962)
McNamara, P.: Deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Standford (2006)
Jones, A.J.I., Pörn, I.: Ideality, sub-ideality and deontic logic. Synthese 65, 275–290 (1985)
Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Logica 57(1), 91–115 (1996)
Hansson, S.O.: Semantics for more plausible deontic logics. In: DEON’02, London, UK (May 2002)
Sahlqvist, H.: Correspondence and completeness in the first- and second-order semantics for modal logic. In: Proceedings of the Third Scandinavian Logic Symposium. North-Holland, Amsterdam (1975)
Cholvy, L., Cuppens, F.: Analyzing consistency of security policies. In: Proceedings of the 18th IEEE Symposium on Research in Security and Privacy, Oakland, CA, USA (May 1997)
Cholvy, L., Cuppens, F.: Reasoning about norms provided by conflicting regulations. In: Prakken, H., McNamara, P. (eds.) Norms, Logics and Information Systems: New Studies in Deontic Logic and Computer Science, pp. 247–264. IOS Press, Amsterdam (1998)
Lewis, D.: Semantic analyses for dyadic deontic logic. Logical theory and semantic analysis, 1–14 (1974)
Cholvy, L., Garion, C.: Utilisation d’une logique de préférences conditionnelles pour raisonner avec des normes contrary-to-duties. Journées Nationales sur les Modéles de Raisonnement, Arras, France (May 2001)
Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.: Meeting the deadline: Why, when and how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W., Rouff, C. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)
Governatori, G., Rotolo, A.: A gentzen system for reasoning with contrary-to-duty obligations. a preliminary study. In: Jones, A.J.I., Horty, J. (eds.) Sixth international workshop on deontic logic in computer science (DEON’02), London, UK, Imperial College, May 2002, pp. 97–116 (2002)
Nute, D.: Apparent obligation. In: Defeasible Deontic Logic: Essays in Nonmonotonic Normative Reasoning, pp. 287–316. Kluwer Academic Publishers, Dordrecht (1997)
van der Torre, L.W.N.: Violated obligations in a defeasible deontic logic. In: Cohn, A. (ed.) Proceedings of the 11th European Conference on Artificial Intelligence, pp. 371–375. John Wiley and Sons, Chichester (1994)
Governatori, G.: Representing business contracts in ruleml. International Journal of Cooperative Information Systems 14(2-3), 181–216 (2005)
Demolombe, R.: Formalisation de l’obligation de faire avec délais. Troisièmes journées francophones des modèles formels de l’interaction (MFI’05), Caen, France (May 2005)
Brunel, J., Cuppens, F., Cuppens-Boulahia, N., Sans, T., Bodeveix, J.P.: Security policy compliance with violation management. In: ACM workshop on Formal methods in security engineering (FMSE’07), Fairfax, Virginia, USA, pp. 31–40. ACM Press, New York (2007)
Dignum, F., Kuiper, R.: Specifying deadlines with dense time using deontic and temporal logic. International Journal of Electronic Commerce 3(2), 67–86 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Piolle, G. (2010). A Dyadic Operator for the Gradation of Desirability. In: Governatori, G., Sartor, G. (eds) Deontic Logic in Computer Science. DEON 2010. Lecture Notes in Computer Science(), vol 6181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14183-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-14183-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14182-9
Online ISBN: 978-3-642-14183-6
eBook Packages: Computer ScienceComputer Science (R0)