Smooth Aggregation Functions on Finite Scales | SpringerLink
Skip to main content

Smooth Aggregation Functions on Finite Scales

  • Conference paper
Computational Intelligence for Knowledge-Based Systems Design (IPMU 2010)

Abstract

In this paper smooth aggregation functions on a finite scale are studied and characterized as solutions of a functional equation analogous to the Frank functional equation. The particular cases of quasi-copulas and copulas are also characterized through a similar functional equation. Previous characterizations of these kind of operations through special matrices are used jointly with the new ones to derive some invariant properties on quasi-copulas and copulas on finite scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguiló, I., Suñer, J., Torrens, J.: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems 159, 1658–1672 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practicioners. Springer, Berlin (2007)

    Google Scholar 

  3. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation operators. New trends and applications, Studies in Fuzziness and Soft Computing, vol. 97. Physica-Verlag, Heidelberg (2002)

    Google Scholar 

  4. De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17, 1–14 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fodor, J.C.: Smooth associative operations on finite ordinal scales. IEEE Trans. on Fuzzy Systems 8, 791–795 (2000)

    Article  Google Scholar 

  6. Frank, M.J.: On the simultaneous associativity of F(x,y) and x + y - F(x,y). Aequationes Math. 19, 194–226 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions. Encyclopedia of Mathematics and its Applications, vol. 127. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, London (2000)

    MATH  Google Scholar 

  9. Klement, E.P., Mesiar, R., Pap, E.: Invariant copulas. Kybernetika 38, 275–285 (2002)

    MathSciNet  Google Scholar 

  10. Kolesárová, A.: 1-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39, 615–629 (2003)

    MathSciNet  Google Scholar 

  11. Kolesárová, A., Mayor, G., Mesiar, R.: Weighted ordinal means. Information Sciences 177, 3822–3830 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mas, M., Mayor, G., Torrens, J.: t-Operators and uninorms on a finite totally ordered set. International Journal of Intelligent Systems 14, 909–922 (1999)

    Article  MATH  Google Scholar 

  13. Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms on a finite chain. Fuzzy Sets and Systems 146, 3–17 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mayor, G., Suñer, J., Torrens, J.: Copula-like operations on finite settings. IEEE Transactions on Fuzzy Systems 13, 468–477 (2005)

    Article  Google Scholar 

  15. Mayor, G., Torrens, J.: Triangular norms in discrete settings. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 189–230. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  16. Robbins, D.P., Rumsey, H.: Determinants and alternating-sign matrices. Advances in Math. 62, 169–184 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mas, M., Monserrat, M., Torrens, J. (2010). Smooth Aggregation Functions on Finite Scales. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. Lecture Notes in Computer Science(), vol 6178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14049-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14048-8

  • Online ISBN: 978-3-642-14049-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics