High-Performance Modular Multiplication on the Cell Processor | SpringerLink
Skip to main content

High-Performance Modular Multiplication on the Cell Processor

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6087))

Included in the following conference series:

Abstract

This paper presents software implementation speed records for modular multiplication arithmetic on the synergistic processing elements of the Cell broadband engine (Cell) architecture. The focus is on moduli which are of special interest in elliptic curve cryptography, that is, moduli of bit-lengths ranging from 192- to 521-bit. Finite field arithmetic using primes which allow particularly fast reduction is compared to Montgomery multiplication. The special primes considered are the five recommended NIST primes, as specified in the FIPS 186-3 standard, and the prime used in the elliptic curve curve25519. While presented and benchmarked on the Cell architecture, the proposed techniques to efficiently implement the modular multiplication algorithms are suited to run on any architecture which is able to compute multiple computations concurrently; e.g. graphics processing units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellare, M., Rogaway, P.: Minimizing the use of random oracles in authenticated encryption schemes. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 1–16. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bernstein, D.-J., Chen, H.-C., Chen, M.-S., Cheng, C.-M., Hsiao, C.-H., Lange, T., Lin, Z.-C., Yang, B.-Y.: The Billion-Mulmod-Per-Second PC. In: SHARCS 2009, pp. 131–144 (2009)

    Google Scholar 

  4. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on graphics cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–501. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar multiplication. In: Finite Fields and Applications. Contemporary Mathematics Series, vol. 461, pp. 1–19 (2008)

    Google Scholar 

  6. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: On the Security of 1024-bit RSA and 160-bit Elliptic Curve Cryptography. Cryptology ePrint Archive, Report 2009/389 (2009), http://eprint.iacr.org/

  7. Bos, J.W., Kaihara, M.E., Montgomery, P.L.: Pollard rho on the PlayStation. In: SHARCS 2009, vol. 3, pp. 35–50 (2009)

    Google Scholar 

  8. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Certicom Research: Standards for Efficient Cryptography 1: Elliptic Curve Cryptography. Standard SEC1, Certicom (2000)

    Google Scholar 

  10. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the Cell broadband engine. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 368–385. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)

    Google Scholar 

  12. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)

    Google Scholar 

  14. Granlund, T.: GMP small operands optimization. In: SPEED 2007 (2007)

    Google Scholar 

  15. Hofstee, H.P.: Power efficient processor architecture and the Cell processor. In: HPCA 2005, pp. 258–262 (2005)

    Google Scholar 

  16. IBM: Multi-precision math library, Example Library API Reference, https://www.ibm.com/developerworks/power/cell/documents.html

  17. ISO/IEC 18033-2: Information technology – Security techniques – Encryption algorithms – Part 2: Asymmetric ciphers (2006)

    Google Scholar 

  18. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. In: Proceedings of the USSR Academy of Science, vol. 145, pp. 293–294 (1962)

    Google Scholar 

  19. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 590–609. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  22. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14(4), 255–293 (2001)

    MATH  MathSciNet  Google Scholar 

  23. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)

    Article  MathSciNet  Google Scholar 

  24. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  25. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  26. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. National Security Agency: Fact sheet NSA Suite B Cryptography (2009), http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

  28. Pollard, J.M.: Factoring with cubic integers. In: [21], pp. 4–10

    Google Scholar 

  29. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Mathematics of Computation 32, 918–924 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Silverman, J.H.: The Arithmetic of Elliptic Curves. In: Gradute Texts in Mathematics. Springer, Heidelberg (1986)

    Google Scholar 

  32. Solinas, J.A.: Generalized Mersenne numbers. Technical Report CORR 99-39, Centre for Applied Cryptographic Research, University of Waterloo (1999)

    Google Scholar 

  33. Takahashi, O., Cook, R., Cottier, S., Dhong, S.H., Flachs, B., Hirairi, K., Kawasumi, A., Murakami, H., Noro, H., Oh, H., Onish, S., Pille, J., Silberman, J.: The circuit design of the synergistic processor element of a Cell processor. In: ICCAD 2005, pp. 111–117. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  34. U.S. Department of Commerce and National Institute of Standards and Technology: Digital Signature Standard (DSS) (2009), http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bos, J.W. (2010). High-Performance Modular Multiplication on the Cell Processor. In: Hasan, M.A., Helleseth, T. (eds) Arithmetic of Finite Fields. WAIFI 2010. Lecture Notes in Computer Science, vol 6087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13797-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13797-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13796-9

  • Online ISBN: 978-3-642-13797-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics