Abstract
The theory of recursive towers of function fields over finite fields was developed by A. Garcia and the author since 1995. We give a survey about the main ideas and results, and we propose some problems for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bassa, A., Garcia, A., Stichtenoth, H.: A New Tower over Cubic Finite Fields. Moscow Math. Journal 8(3), 401–418 (2008)
Cramer, R.: Private Communication (2010)
Duursma, I., Poonen, B., Zieve, M.: Everywhere ramified towers of global function fields. In: Mullen, G.L., Poli, A., Stichtenoth, H., et al. (eds.) Fq7 2003. LNCS, vol. 2948, pp. 148–153. Springer, Heidelberg (2004)
Garcia, A., Stichtenoth, H.: On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields. J. Number Theory 61, 248–273 (1996)
Garcia, A., Stichtenoth, H.: On Tame Towers over Finite Fields. J. Reine Angew. Math. 557, 53–80 (2003)
Garcia, A., Stichtenoth, H.: Explicit Towers of Function Fields over Finite Fields. In: Topics in Geometry, Coding Theory and Cryptography, pp. 1–58. Springer, Heidelberg (2006)
Garcia, A., Stichtenoth, H., Thomas, M.: On Towers and Composita of Towers of Function Fields over Finite Fields. Finite Fields and Appl. 3, 257–274 (1997)
Goppa, V.D.: Codes on Algebraic Curves. Soviet Math. Dokl. 24(1), 170–172 (1981)
Hu, X., Maharaj, H.: On the qth Power Algorithm. Finite Fields and Appl. 14, 1068–1082 (2008)
Niederreiter, H., Xing, C.P.: Algebraic Geometry in Coding Theory and Cryptography. Princeton University Press, Princeton (2009)
Serre, J.-P.: Sur le Nombre des Points Rationnels d’une Courbe Algébrique sur un Corps Finis. C. R. Acad. Sci. Paris 296, 397–402 (1983)
Stichtenoth, H.: Algebraic Function Fields and Codes, 2nd edn. Graduate Texts in Mathematics, vol. 254. Springer, Heidelberg (2009)
Tsfasman, M.A., Vladut, S.G., Zink, T.: Modular Curves, Shimura Curves, and Goppa Codes, Better than the Varshamov-Gilbert Bound. Math. Nachr. 109, 21–28 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stichtenoth, H. (2010). Recursive Towers of Function Fields over Finite Fields. In: Hasan, M.A., Helleseth, T. (eds) Arithmetic of Finite Fields. WAIFI 2010. Lecture Notes in Computer Science, vol 6087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13797-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-13797-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13796-9
Online ISBN: 978-3-642-13797-6
eBook Packages: Computer ScienceComputer Science (R0)