Abstract
Predicting the three-dimensional (3D) structure of a protein is a key problem in molecular biology. It is also an interesting issue for statistical methods recognition. There are many approaches to this problem considering discriminative and generative classifiers. In this paper a classifier combining the well-known Support Vector Machine (SVM) classifier with Regularized Discriminant Analysis (RDA) classifier is presented. It is used on a real world data set. The obtained results improve previously published methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16, 412–424 (2000)
Prevost, L., Qudot, L., Moises, A., Michel-Sendis, C., Milgram, M.: Hybrid generative/disciminative classifier for unconstrained character recognition. Pattern Recognition Letters 26, 1840–1848 (2005)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chothia, C.: One thousand families for the molecular biologist. Nature 357, 543–544 (1992)
Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)
Dubchak, I., Muchnik, I., Holbrook, S.R., Kim, S.H.: Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. USA 92, 8700–8704 (1995)
Dubchak, I., Muchnik, I., Kim, S.H.: Protein folding class predictor for SCOP: approach based on global descriptors. In: Proceedings ISMB (1997)
Lo Conte, L., Ailey, B., Hubbard, T.J.P., Brenner, S.E., Murzin, A.G., Chotchia, C.: SCOP: a structural classification of protein database. Nucleic Acids Res. 28, 257–259 (2000)
Shen, H.B., Chou, K.C.: Ensemble classifier for protein fold pattern recognition. Bioinformatics 22, 1717–1722 (2006)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Vural, V., Dy, J.G.: A hierarchical method for multi-class support vector machines. In: Proceedings of the twenty-first ICML, Banff, Alberta, Canada, July 4-8, p. 105 (2004)
Wang, L., Shen, X.: Multi-category support vector machines, feature selection and solution path. Statistica Sinica 16, 617–633 (2006)
Nanni, L.: A novel ensemble of classifiers for protein fold recognition. Neurocomputing 69, 2434–2437 (2006)
Okun, O.: Protein fold recognition with k-local hyperplane distance nearest neighbor algorithm. In: Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics, Pisa, Italy, pp. 51–57, September 24 (2004)
Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: Proceedings of the ninth ICONIP, Singapore, November 18-22, vol. 5, pp. 2492–2496 (2002)
Pal, N.R., Chakraborty, D.: Some new features for protein fold recognition. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 1176–1183. Springer, Heidelberg (2003)
Chung, I.F., Huang, C.D., Shen, Y.H., Lin, C.T.: Recognition of structure classification of protein folding by NN and SVM hierarchical learning architecture. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 1159–1167. Springer, Heidelberg (2003)
Hobohm, U., Sander, C.: Enlarged representative set of Proteins. Protein Sci. 3, 522–524 (1994)
Hobohm, U., Scharf, M., Schneider, R., Sander, C.: Selection of a representative set of structures from the Brookhaven. Protein Bank Protein Sci. 1, 409–417 (1992)
Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large Margin DAGs for Multiclass Classification. In: Proceedings of Neural Information Processing Systems, NIPS 1999, pp. 547–553 (2000)
Fei, B., Liu, J.: Binary Tree of SVM: A New Fast Multiclass Training and Classification Algorithm. IEEE Transaction on Neural Networks 17(3) (2006)
Kijsirikul, B., Ussivakul, N.: Multiclass support vector machines using adaptive directed acyclic graph. In: Proceedings of IJCNN, pp. 980–985 (2002)
Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Annals of Statistics 26(2), 451–471 (1998)
Dietterich, T.G., Bakiri, G.: Solving multiclass problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)
Friedman, J.H.: Regularized Discriminant Analysis. Journal of the American Statistical Association 84(405), 165–175 (1989)
Liu, C.L., Fujisawa, H.: Classification and Learning for Character Recognition: Comparison of Methods and Remaining Problems. In: Proc. Int. Workshop on Neural 21 Networks and Learning in Document Analysis and Recognition, Seoul, Korea (August 2005)
Gori, M., Scarselli, F.: Are multilayer perceptrons adequate for pattern recognition and verification? IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1121–1132 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chmielnicki, W., Sta̧por, K. (2010). Protein Fold Recognition with Combined SVM-RDA Classifier. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-13769-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13768-6
Online ISBN: 978-3-642-13769-3
eBook Packages: Computer ScienceComputer Science (R0)