Invariant Embedding Technique and Its Applications for Improvement or Optimization of Statistical Decisions | SpringerLink
Skip to main content

Invariant Embedding Technique and Its Applications for Improvement or Optimization of Statistical Decisions

  • Conference paper
Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2010)

Abstract

In the present paper, for improvement or optimization of statistical decisions under parametric uncertainty, a new technique of invariant embedding of sample statistics in a performance index is proposed. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the problem and to find the best invariant decision rule, which has smaller risk than any of the well-known decision rules. To illustrate the proposed technique, application examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conrad, S.A.: Sales Data and the Estimation of Demand. Oper. Res. Quart. 27, 123–127 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Liyanage, L.H., Shanthikumar, J.G.: A Practical Inventory Policy Using Operational Statistics. Operations Research Letters 33, 341–348 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Scarf, H.: Bayes Solutions of Statistical Inventory Problem. Ann. Math. Statist. 30, 490–508 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chu, L.Y., Shanthikumar, J.G., Shen, Z.J.M.: Solving Operational Statistics via a Bayesian Analysis. Operations Research Letters 36, 110–116 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bookbinder, J.H., Lordahl, A.E.: Estimation of Inventory Reorder Level Using the Bootstrap Statistical Procedure. IIE Trans. 21, 302–312 (1989)

    Article  Google Scholar 

  6. Scarf, H.: A Min–Max Solution of an Inventory Problem. Studies in the Mathematical Theory of Inventory and Production, ch. 12. Stanford University Press, Stanford (1958)

    Google Scholar 

  7. Gallego, G., Moon, I.: The Distribution Free Newsvendor Problem: Review and Extensions. J. Oper. Res. Soc. 44, 825–834 (1993)

    MATH  Google Scholar 

  8. Nechval, N.A., Nechval, K.N., Vasermanis, E.K.: Effective State Estimation of Stochastic Systems. Kybernetes 32, 666–678 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nechval, N.A., Vasermanis, E.K.: Improved Decisions in Statistics. SIA “Izglitibas soli”, Riga (2004)

    Google Scholar 

  10. Nechval, N.A., Nechval, K.N.: Constrained Optimization in Newsboy Problems under Uncertainty via Statistical Inference Equivalence Principle. In: Al-Begain, K., Bolch, G., Telek, M. (eds.) Proceedings of the 12th International Conference on Analytical and Stochastic Modelling Techniques and Applications (ASMTA 2005), pp. 166–171, RTU, Riga, Latvia (2005)

    Google Scholar 

  11. Nechval, N.A., Berzins, G., Purgailis, M., Nechval, K.N.: Improved Estimation of State of Stochastic Systems via Invariant Embedding Technique. WSEAS Transactions on Mathematics 7, 141–159 (2008)

    MathSciNet  Google Scholar 

  12. Nechval, N.A., Nechval, K.N., Berzins, G., Purgailis, M., Rozevskis, U.: Stochastic Fatigue Models for Efficient Planning Inspections in Service of Aircraft Structures. In: Al-Begain, K., Heindl, A., Telek, M. (eds.) ASMTA 2008. LNCS, vol. 5055, pp. 114–127. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Nechval, N.A., Berzins, G., Purgailis, M., Nechval, K.N., Zolova, N.: Improved Adaptive Control of Stochastic Systems. Advances in Systems Science and Applications  9, 11–20 (2009)

    Google Scholar 

  14. Hahn, G.J., Nelson, W.: A Survey of Prediction Intervals and their Applications. J. Qual. Tech. 5, 178–188 (1973)

    Google Scholar 

  15. Barlow, R.E., Proshan, F.: Tolerance and Confidence Limits for Classes of Distributions Based on Failure Rate. Ann. Math. Stat. 37, 1593–1601 (1966)

    Article  Google Scholar 

  16. Epstein, B., Sobel, M.: Some Theorems Relevant to Life Testing from an Exponential Population. Ann. Math. Statist. 25, 373–381 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, 3rd edn., vol. 1. Griffin, London (1969)

    MATH  Google Scholar 

  18. Grubbs, F.E.: Approximate Fiducial Bounds on Reliability for the Two Parameter Negative Exponential Distribution. Technometrics 13, 873–876 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nechval, N., Purgailis, M., Berzins, G., Cikste, K., Krasts, J., Nechval, K. (2010). Invariant Embedding Technique and Its Applications for Improvement or Optimization of Statistical Decisions. In: Al-Begain, K., Fiems, D., Knottenbelt, W.J. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2010. Lecture Notes in Computer Science, vol 6148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13568-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13568-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13567-5

  • Online ISBN: 978-3-642-13568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics