Aggregated Information Representation for Technical Analysis on Stock Market with Csiszár Divergence | SpringerLink
Skip to main content

Aggregated Information Representation for Technical Analysis on Stock Market with Csiszár Divergence

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2010)

Abstract

The paper presents a new method for multidimensional representation of financial information in the context of technical analysis. Typically, technical analysis of given financial instrument does not take into account a broader view on the market. We want to analyze the information about the environment of the primary instrument. Hence, there is the problem of the results synthesis in a coherent and a transparent way. In this paper we propose aggregation of the information from different sources into a single aggregate graph which enables a technical analysis. The complete information is obtained with the p-norms approach. To assess the impact of particular information on the primary instrument we applied divergence measures such as Csiszár divergence and Beta divergence. Practical experiment on the stock exchange data confirmed the validity of proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.: Diferential-Geometrical Methods in Statistics. Springer, Heidelberg (1985)

    Google Scholar 

  2. Amari, S.: Information geometry of the EM and EM algorithms for neural networks. Neural Networks 8, 1379–1408 (1995)

    Article  Google Scholar 

  3. Anscombe, F.J.: Graphs in statistical analysis. The American Statistician 27, 17–21 (1973)

    Article  Google Scholar 

  4. Cichocki, A., Zdunek, R., Amari, S.: Csiszar’s Divergences for Non-Negative Matrix Factorization: Family of New Algorithms. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 32–39. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Cichocki, A., Zdunek, R., Phan, A.-H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis. John Wiley, Chichester (2009)

    Google Scholar 

  6. Csiszar, I.: Information measures: A critical survey. In: Prague Conference on Information Theory, vol. A, pp. 73–86. Academia Prague (1974)

    Google Scholar 

  7. Fama, E.: Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance 25(2), 383–417 (1970)

    Article  Google Scholar 

  8. Hellstrom, T.: ASTA - a Tool for Development of Stock Prediction Algorithms. Theory of Stochastic Processes 5(21), 22–32 (1999)

    Google Scholar 

  9. Hellstrom, T., Holmstrom, K.: Parameter Tuning in Trading Algorithms Using ASTA. In: Computational Finace. MIT 3 Press, Cambridge (1999)

    Google Scholar 

  10. Jaynes, E.T.: Probability theory the logic of science. Cambridge Univ. Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Kennedy, R.L., Lee, Y., Van Roy, B., Reed, C., Lippman, R.P. (eds.): Solving Data Mining Problems with Pattern Recognition. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  12. Krutsinger, J.: Trading Systems: Secrets of the Masters. McGraw-Hill, New York (1997)

    Google Scholar 

  13. Luo, Y., Davis, D., Liu, K.: A Multi-Agent Decision Support System for Stock Trading. The IEEE Network Magazine Special Issue on Enterprise Networking and Services 16(1) (2002)

    Google Scholar 

  14. Minami, M., Eguchi, S.: Robust blind source separation by beta-divergence. Neural Computation 14, 1859–1886 (2002)

    Article  MATH  Google Scholar 

  15. Murphy, J.J.: Technical Analysis of the Financial Markets. New York Institute of Finance (1999)

    Google Scholar 

  16. Murphy, J.J.: Intermarket Analysis Profiting from Global Market Relationships. John Wiley & Sons Inc., Chichester (2004)

    Google Scholar 

  17. Nison, S.: Japanese Candlestick Charting Techniques. New York Institute of Finance (1991)

    Google Scholar 

  18. Peters, E.: Fractal Market Analysis: Applying Chaos Theory to Investment & Economics. John Wiley & Sons, Chichester (1994)

    Google Scholar 

  19. Prechter, R., Frost, A.J.: Elliott Wave Principle: Key to Market Behavior. New Classics Library (1998)

    Google Scholar 

  20. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. The American Statistician 42(1), 59–66 (1988)

    Article  Google Scholar 

  21. Schwager, J.: Stock Market Wizards: Interviews with America’s Top Stock Traders. Harper Paperbacks (1993)

    Google Scholar 

  22. Schwager, J.: The New Market Wizards: Conversations with America’s Top Traders. Harper Paperbacks (1994)

    Google Scholar 

  23. Sperandeo, V.: Trader Vic: Methods of a Wall Street Master. J. Wiley & Sons, Chichester (1993)

    Google Scholar 

  24. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Ząbkowski, T. (2010). Aggregated Information Representation for Technical Analysis on Stock Market with Csiszár Divergence. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2010. Lecture Notes in Computer Science(), vol 6071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13541-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13541-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13540-8

  • Online ISBN: 978-3-642-13541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics