Abstract
A number-conserving cellular automaton (NCCA) is a cellular automaton whose states are integers and whose transition function keeps the sum of all cells constant throughout its evolution. It can be seen as a kind of modeling of the physical conservation laws of mass or energy. In this paper we show a construction method of radius 1/2 NCCAs. The local transition function is expressed via a single unary function which can be regarded as ‘flows’ of numbers. In spite of the strong constraint, we constructed radius 1/2 NCCAs that simulate any radius 1/2 cellular automata or any radius 1 NCCA. We also consider the state complexity of these non-splitting simulations (4n 2 + 2n + 1 and 8n 2 + 12n − 16, respectively). These results also imply existence of an intrinsically universal radius 1/2 NCCA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boccara, N., Fukś, H.: Number-conserving cellular automaton rules. Fundamenta Informaticae 52, 1–13 (2003)
Durand, B., Formenti, E., Grange, A., Róka, Z.: Number conserving cellular automata: new results on decidability and dynamics. In: Morvan, M., Rémila, É. (eds.) Proceedings of Discrete Models for Complex Systems, DMCS 2003. Discrete Mathematics and Theoretical Computer Science, vol. AB, pp. 129–140 (2003)
Durand, B., Formenti, E., Róka, Z.: Number conserving cellular automata I: decidability. Theoretical Computer Science 299(1-3), 523–535 (2003)
Fukś, H., Sullivan, K.: Enumeration of number-conserving cellular automata rules with two inputs. Journal of Cellular Automata 2(2), 141–148 (2007)
Hattori, T., Takesue, S.: Additive conserved quantities in discrete-time lattice dynamical systems. Pysica 49D, 295–322 (1991)
Imai, K., Fujita, K., Iwamoto, C., Morita, K.: Embedding a logically universal model and a self-reproducing model into number-conserving cellular automata. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 164–175. Springer, Heidelberg (2002)
Imai, K., Ikazaki, A., Iwamoto, C., Morita, K.: A logically universal number-conserving cellular automaton with a unary table-lookup function. Trans. IEICE E87-D(3), 694–699 (2004)
Kasai, Y.: Number-conserving cellular automata with universality under errors, Master’s thesis, Hiroshima University (2003)
Moreira, A.: Universality and decidability of number-conserving cellular automata. Theoretical Computer Science 292, 711–721 (2003)
Moreira, A., Boccara, N., Goles, E.: On conservative and monotone one-dimensional cellular automata and their particle representation. Theoretical Computer Science 325, 285–316 (2004)
Morita, K.: Computation-universality of one-dimensional one-way reversible cellular automata. Information Processing Letters 42, 325–329 (1992)
Nagel, K., Schreckenberg, M.: A cellular automaton for freeway traffic. Journal of Physics I(2), 2221–2229 (1992)
Ollinger, N., Richard, G.: A Particular Universal Cellular Automaton. In: Proc. International Workshop on The Complexity of Simple Programs (CSP 2008), pp. 205–214 (2008)
Scharanko, A., Oliveira, P.: Derivation of one-dimensional, reversible, number-conserving cellular automata rules. In: Proc. 15th International Workshop on Cellular Automata and Discrete Complex Systems (Automata 2009), pp. 335–345 (2009)
Tanimoto, N., Imai, K.: A Characterization of von Neumann Neighbor number-conserving cellular automata. Journal of Cellular Automata 4(1), 39–54 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Imai, K., Alhazov, A. (2010). On Universality of Radius 1/2 Number-Conserving Cellular Automata. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-13523-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13522-4
Online ISBN: 978-3-642-13523-1
eBook Packages: Computer ScienceComputer Science (R0)