Abstract
We first devise a branching algorithm that computes a minimum independent dominating set with running time O *(20.424n) and polynomial space. This improves the O *(20.441n) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs, Proc. WG’06). We then study approximation of the problem by moderately exponential algorithms and show that it can be approximated within ratio 1 + ε, for any ε> 0, in a time smaller than the one of exact computation and exponentially decreasing with ε. We also propose approximation algorithms with better running times for ratios greater than 3.
Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alimonti, P., Calamoneri, T.: Improved Approximations of Independent Dominating Set in Bounded Degree Graphs. In: D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 2–16. Springer, Heidelberg (1997)
Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combinatorial Problems by Moderately Exponential Algorithm. In: Proc. of WADS 2009. LNCS, vol. 5664, pp. 507–518. Springer, Heidelberg (2009)
Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of min coloring by moderately exponential algorithms. Inf. Process. Lett. 109(16), 950–954 (2009)
Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32(6), 547–556 (2004)
Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted set cover. Inf. Process. Lett. 109(16), 957–961 (2009)
Fomin, F.V., Grandoni, F., Kratsch, D.: A measure and conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)
Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W. H. Freeman, San Francisco (1979)
Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 78–89. Springer, Heidelberg (2006)
Halldórsson, M.M.: Approximating the minimum maximal independence number. Inform. Process. Lett. 46, 169–172 (1993)
Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inform. Process. Lett. 27, 119–123 (1988)
Moon, J.W., Moser, L.: On cliques in graphs. Israel J. of Mathematics 3, 23–28 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bourgeois, N., Escoffier, B., Paschos, V.T. (2010). Fast Algorithms for min independent dominating set . In: Patt-Shamir, B., Ekim, T. (eds) Structural Information and Communication Complexity. SIROCCO 2010. Lecture Notes in Computer Science, vol 6058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13284-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-13284-1_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13283-4
Online ISBN: 978-3-642-13284-1
eBook Packages: Computer ScienceComputer Science (R0)