Fast Algorithms for min independent dominating set | SpringerLink
Skip to main content

Fast Algorithms for min independent dominating set

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2010)

Abstract

We first devise a branching algorithm that computes a minimum independent dominating set with running time O *(20.424n) and polynomial space. This improves the O *(20.441n) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs, Proc. WG’06). We then study approximation of the problem by moderately exponential algorithms and show that it can be approximated within ratio 1 + ε, for any ε> 0, in a time smaller than the one of exact computation and exponentially decreasing with ε. We also propose approximation algorithms with better running times for ratios greater than 3.

Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alimonti, P., Calamoneri, T.: Improved Approximations of Independent Dominating Set in Bounded Degree Graphs. In: D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 2–16. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combinatorial Problems by Moderately Exponential Algorithm. In: Proc. of WADS 2009. LNCS, vol. 5664, pp. 507–518. Springer, Heidelberg (2009)

    Google Scholar 

  3. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of min coloring by moderately exponential algorithms. Inf. Process. Lett. 109(16), 950–954 (2009)

    Article  MathSciNet  Google Scholar 

  4. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32(6), 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted set cover. Inf. Process. Lett. 109(16), 957–961 (2009)

    Article  MathSciNet  Google Scholar 

  6. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure and conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  8. Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 78–89. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Halldórsson, M.M.: Approximating the minimum maximal independence number. Inform. Process. Lett. 46, 169–172 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inform. Process. Lett. 27, 119–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. of Mathematics 3, 23–28 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourgeois, N., Escoffier, B., Paschos, V.T. (2010). Fast Algorithms for min independent dominating set . In: Patt-Shamir, B., Ekim, T. (eds) Structural Information and Communication Complexity. SIROCCO 2010. Lecture Notes in Computer Science, vol 6058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13284-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13284-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13283-4

  • Online ISBN: 978-3-642-13284-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics