Noise Detection for Ensemble Methods | SpringerLink
Skip to main content

Noise Detection for Ensemble Methods

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6113))

Included in the following conference series:

  • 1777 Accesses

Abstract

In this paper we present a novel noisy signal identification method applied in ensemble methods for destructive components classification. Typically two main signal properties like variability and predictability are described by the same second order statistic characteristic. In our approach we postulate to separate measure of the signal internal dependencies and their variability. The validity of the approach is confirmed by the experiment with energy load data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Bishop, C.M.: Neural networks for pattern recognition. Oxford Univ. Press, Oxford (1996)

    MATH  Google Scholar 

  3. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Computation 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Book  Google Scholar 

  5. Goransson, B.: Direction finding in the presence of spatially correlated noise fields. In: Proc. European Signal Processing Conf. (1994)

    Google Scholar 

  6. Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116, 770–808 (1951)

    Google Scholar 

  7. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)

    Book  Google Scholar 

  8. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Lee, D.D., Seung, H.S.: Learning of the parts of objects by non-negative matrix factorization. Nature 401 (1999)

    Google Scholar 

  10. Li, Y., Cichocki, A., Amari, S.: Sparse component analysis for blind source separation with less sensors than sources. In: Fourth Int. Symp. on ICA and Blind Signal Separation, Nara, Japan, pp. 89–94 (2003)

    Google Scholar 

  11. Lindley, D.V.: The probability approach to the treatment of uncertainty in artificial intelligence and expert systems. Statistical Science 2, 17–24 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. MacDonough, R.N., Whalen, A.D.: Detection of signals in noise, 2nd edn. Academic Press, San Diego (1995)

    Google Scholar 

  13. Mandelbrot, B.: Multifractals and 1/f noise. Springer, Heidelberg (1997)

    Google Scholar 

  14. Peters, E.: Fractal market analysis. John Wiley and Son, Chichester (1996)

    Google Scholar 

  15. Samorodnitskij, G., Taqqu, M.S.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, New York (1994)

    Google Scholar 

  16. Stone, J.V.: Blind Source Separation Using Temporal Predictability. Neural Computation 13(7), 1559–1574 (2001)

    Article  MATH  Google Scholar 

  17. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)

    Google Scholar 

  18. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Prediction Improvement via Smooth Component Analysis and Neural Network Mixing. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 133–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice-Hall, New Jersey (1992)

    MATH  Google Scholar 

  20. Vaseghi, S.V.: Advanced signal processing and digital noise reduction. John Wiley and Sons, Chichester (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Zabkowski, T. (2010). Noise Detection for Ensemble Methods. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13208-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13208-7_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13207-0

  • Online ISBN: 978-3-642-13208-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics