Learning Methods for Type-2 FLS Based on FCM | SpringerLink
Skip to main content

Learning Methods for Type-2 FLS Based on FCM

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6113))

Included in the following conference series:

Abstract

This paper presents a new two-phase learning method for interval type-2 fuzzy logic systems. The method combines traditional learning approaches to type-1 fuzzy systems with fitting of interval memberships using FCM memberships. Two improving modifications of the proposed method are supplied additionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castillo, O., Aguilar, L., Cazarez-Castro, N., Boucherit, M.: Application of type-2 fuzzy logic controller to an induction motor drive with seven-level diode-clamped inverter and controlled infeed. Electrical Engineering 90(5), 347–359 (2008)

    Article  Google Scholar 

  2. Hagras, H.: A hierarchical type-2 fuzzy logic control architecture for autonomous robots. IEEE Transactions on Fuzzy Systems 12(4), 524–539 (2004)

    Article  Google Scholar 

  3. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  4. Uncu, O., Turksen, I.: Discrete interval type 2 fuzzy system models using uncertainty in learning parameters. IEEE Transactions on Fuzzy Systems 15(1), 90–106 (2007)

    Article  Google Scholar 

  5. Karnik, N., Mendel, J., Liang, Q.: Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems 7(6), 643–658 (1999)

    Article  Google Scholar 

  6. Dorohonceanu, B.: Comparing fuzzy numbers, algorithm alley. Dr. Dobb’s Journal 343, 38–45 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A. (2010). Learning Methods for Type-2 FLS Based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13208-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13208-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13207-0

  • Online ISBN: 978-3-642-13208-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics