A New Incremental Growing Neural Gas Algorithm Based on Clusters Labeling Maximization: Application to Clustering of Heterogeneous Textual Data | SpringerLink
Skip to main content

A New Incremental Growing Neural Gas Algorithm Based on Clusters Labeling Maximization: Application to Clustering of Heterogeneous Textual Data

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

Neural clustering algorithms show high performance in the usual context of the analysis of homogeneous textual dataset. This is especially true for the recent adaptive versions of these algorithms, like the incremental neural gas algorithm (IGNG). Nevertheless, this paper highlights clearly the drastic decrease of performance of these algorithms, as well as the one of more classical algorithms, when a heterogeneous textual dataset is considered as an input. A new incremental growing neural gas algorithm exploiting knowledge issued from clusters current labeling in an incremental way is proposed as an alternative to the original distance based algorithm. This solution leads to obtain very significant increase of performance for the clustering of heterogeneous textual data. Moreover, it provides a real incremental character to the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Attik, M., Al Shehabi, S., Lamirel, J.-C.: Clustering Quality Measures for Data Samples with Multiple Labels. In: Proceedings of IASTED International Conference on Databases and Applications (DBA), Innsbruck, Austria (2006)

    Google Scholar 

  2. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Communications in Statistics 3, 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  3. Davies, D., Bouldin, W.: A cluster separation measure. IEEE Trans. Pattern Anal. Machine Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood for incomplete data via the em algorithm. Journal of the Royal Statistical Society B-39, 1–38 (1979)

    MathSciNet  Google Scholar 

  5. Frizke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., leen, T.K. (eds.) Advances in neural Information processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  6. François, C., Hoffmann, M., Lamirel, J.-C., Polanco, X.: Artificial Neural Network mapping experiments. EICSTES (IST-1999-20350) Final Report (WP 9.4), 86 p. (2003)

    Google Scholar 

  7. Hamza, H., Belaïd, Y., Belaîd, A., Chaudhuri, B.B.: Incremental classification of invoice documents. In: Proceedings of 19th International Conference on Pattern Recognition - ICPR (2008)

    Google Scholar 

  8. Kassab, R., Lamirel, J.-C.: Feature Based Cluster Validation for High Dimensional Data. In: Proceedings of IASTED International Conference on Artificial Intelligence and Applications (AIA), Innsbruck, Austria (2008)

    Google Scholar 

  9. Kohonen, T.: Self-Organising Maps, 3rd edn. Springer, Berlin (2001)

    Google Scholar 

  10. Lamirel, J.-C., Al-Shehabi, S., François, C., Hoffmann, M.: New classification quality estimators for analysis of documentary information: application to patent analysis and web mapping. Scientometrics 60(3) (2004)

    Google Scholar 

  11. Lamirel, J.-C., Ta, A.P., Attik, M.: Novel Labeling Strategies for Hierarchical Representation of Multidimensional Data Analysis Results. In: Proceedings of IASTED International Conference on Artificial Intelligence and Applications (AIA), Innsbruck, Austria (2008)

    Google Scholar 

  12. Martinetz, T., Schulten, K.: A “neural gas” network learns topologies. In: Kohonen, T., Makisara, K., Simula, O., Kangas, J. (eds.) Articial Neural Networks, pp. 397–402. Elsevier, Amsterdam (1991)

    Google Scholar 

  13. Merkl, D., He, S.H., Dittenbach, M., Rauber, A.: Adaptive hierarchical incremental grid growing: an architecture for high-dimensional data visualization. In: Proceedings of the 4th Workshop on Self-Organizing Maps, Advances in Self-Organizing Maps, Kitakyushu, Japan, pp. 293–298 (2003)

    Google Scholar 

  14. Pons, P., Latapy, M.: Computing communities in large networks using random walks. Journal of Graph Algorithms and Application (2006)

    Google Scholar 

  15. Prudent, Y., Ennaji, A.: An Incremental Growing Neural Gas learns Topology. In: Proceedings of ESANN 2005, 13th European Symposium on Artificial Neural Networks, Bruges, Belgium (2005)

    Google Scholar 

  16. Robertson, S.E., Sparck Jones, K.: Relevance Weighting of Search Terms. Journal of the American Society for Information Science 27, 129–146 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lamirel, JC., Boulila, Z., Ghribi, M., Cuxac, P. (2010). A New Incremental Growing Neural Gas Algorithm Based on Clusters Labeling Maximization: Application to Clustering of Heterogeneous Textual Data. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13033-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13033-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13032-8

  • Online ISBN: 978-3-642-13033-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics