Fast Depth Map Compression and Meshing with Compressed Tritree | SpringerLink
Skip to main content

Fast Depth Map Compression and Meshing with Compressed Tritree

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5995))

Included in the following conference series:

Abstract

We propose in this paper a new method based on binary space partitions to simultaneously mesh and compress a depth map. The method divides the map adaptively into a mesh that has the form of a binary triangular tree (tritree). The nodes of the mesh are the sparse non-uniform samples of the depth map and are able to interpolate the other pixels with minimal error. We apply differential coding after that to represent the sparse disparities at the mesh nodes. We then use entropy coding to compress the encoded disparities. We finally benefit from the binary tree and compress the mesh via binary tree coding to condense its representation. The results we obtained on various depth images show that the proposed scheme leads to lower depth error rate at higher compression ratios when compared to standard compression techniques like JPEG 2000. Moreover, using our method, a depth map is represented with a compressed adaptive mesh that can be directly applied to render the 3D scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Computer Vision 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  2. Krishnamurthy, R., Chai, B., Tao, H., Sethuraman, S.: Compression and transmission of depth maps for image-based rendering. In: IEEE Conf. Image Processing (October 2001)

    Google Scholar 

  3. Chai, B., Sethuraman, S., Sawhney, H., Hatrack, P.: Depth map compression for real-time view-based rendering. Pattern Recognition L 25(7), 755–766 (2004)

    Article  Google Scholar 

  4. Morvan, Y., de With, H.N., Farin, D.: Depth-image representation employing meshes for intermediate-view rendering and coding. In: SPIE Conf. Electronic Imaging: Stereoscopic Displays and Applications (January 2006)

    Google Scholar 

  5. Sarkis, M., Diepold, K.: Content adaptive mesh representation of images using binary space partitions. IEEE T. Image Processing 18(5), 1069–1079 (2009)

    Article  Google Scholar 

  6. Farin, D., Peerlings, R., de With, H.N.: Depth-image representation employing meshes for intermediate-view rendering and coding. In: 3DTV Conf. (May 2007)

    Google Scholar 

  7. Kim, S.Y., Ho, Y.S.: Mesh-based depth coding for 3D video using hierarchical decomposition of depth maps. In: IEEE Conf. Image Processing (October 2007)

    Google Scholar 

  8. Bao, P., Gourlay, D., Li, Y.: Context based depth image compression for distributed virtual environment. In: IEEE Conf. Cyberworlds (December 2003)

    Google Scholar 

  9. Sappa, A.D., Garcia, M.A.: Coarse-to-fine approximation of range images with bounded error adaptive triangular meshes. SPIE J. Electronic Imaging 16(2) (April 2007)

    Google Scholar 

  10. Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N., Turner, G.: Real-time, continuous level detail rendering of height fields. In: ACM SIGGRAPH, August 1996, pp. 109–118 (1996)

    Google Scholar 

  11. Wang, Y., Lee, O.: Use of two-dimensional deformable mesh structures for video coding, part II–the analysis problem and a region-based coder employing an active mesh representation. IEEE T. Circuits and Systems for Video Technology 6(6), 647–659 (1996)

    Article  Google Scholar 

  12. Pajarola, R.: Overview of quadtree-based terrain triangulation and visualization. Technical Report UCI-ICS-02-01, Information and Computer Science, Uni. California Irvine (2002)

    Google Scholar 

  13. Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Signal Processing J. 86(7), 1604–1616 (2006)

    Article  MATH  Google Scholar 

  14. Yang, Y., Wernick, M.N., Brankov, J.G.: A fast approach for accurate content-adaptive mesh generation. IEEE T. Image Processing 12(8), 866–880 (2003)

    Article  MathSciNet  Google Scholar 

  15. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: IEEE Conf. Computer Vision and Pattern Recognition (June 2007)

    Google Scholar 

  16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Said, A.: Introduction to arithmetic coding theory and practice. Technical Report HPL-2004-76, Hewlett-Packard Laboratories (2004)

    Google Scholar 

  18. Said, A.: Comparative analysis of arithmetic coding computational complexity. In: Data Compression Conf. (March 2004)

    Google Scholar 

  19. De Jonge, W., Tanenbaum, A., Van De Riet, R.: Two access methods using compact binary trees. IEEE T. Software Engineering SE-13(7), 799–810 (1987)

    Article  Google Scholar 

  20. Shishibori, M., Mochizuki, H., Arita, T., Aoe, J.I.: An efficient method of compressing binary tries. In: IEEE Conf. Systems, Man, and Cybernetics (October 1996)

    Google Scholar 

  21. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Conf. Computer Vision and Pattern Recognition (June 2003)

    Google Scholar 

  22. Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality video view interpolation using a layered representation. ACM T. Graphics 23(3), 600–608 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarkis, M., Zia, W., Diepold, K. (2010). Fast Depth Map Compression and Meshing with Compressed Tritree. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12304-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12303-0

  • Online ISBN: 978-3-642-12304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics