Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection | SpringerLink
Skip to main content

Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6024))

Included in the following conference series:

  • 2687 Accesses

Abstract

Standard game theory relies on the assumption that players are rational agents that try to maximize their payoff. Experiments with human players indicate that Nash equilibrium is seldom played. The goal of proposed approach is to explore more nuance equilibria by allowing a player to be biased towards different equilibria in a fuzzy manner. Several classes of equilibria (Nash, Pareto, Nash-Pareto) are defined by using appropriate generative relations. An evolutionary technique for detecting fuzzy equilibria is considered. Experimental results on Cournot’ duopoly game illustrate evolutionary detection of proposed fuzzy equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bade, S., Haeringer, G., Renou, L.: More strategies, more Nash equilibria, Working Paper 2004-15, School of Economics University of Adelaide University (2004)

    Google Scholar 

  2. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II KanGAL Report No. 200001, Indian Institute of Tehnology Kanpur (2000)

    Google Scholar 

  3. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  4. Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Evolutionary Equilibria Detection in Non-cooperative Games. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoStar 2009. LNCS, vol. 5484, pp. 253–262. Springer, Heidelberg (2009)

    Google Scholar 

  5. Lung, R.I., Dumitrescu, D.: Computing Nash Equilibria by Means of Evolutionary Computation. Int. J. of Computers, Communications & Control, 364–368 (2008)

    Google Scholar 

  6. Maskin, E.: The theory of implementation in Nash equilibrium: A survey. In: Hurwicz, L., Schmeidler, D., Sonnenschein, H. (eds.) Social Goals and Social Organization, pp. 173–204. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  7. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman, H.M., Kendrick, D.A., Rust, J. (eds.) Handbook of Computational Economics. Elsevier, Amsterdam (1996)

    Google Scholar 

  8. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  9. Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, New-York (2004)

    Google Scholar 

  10. Wu, S.H., Soo, V.W.: A Fuzzy Game Theoretic Approach to Multi-Agent Coordination. In: Ishida, T. (ed.) PRIMA 1998. LNCS (LNAI), vol. 1599, pp. 76–87. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumitrescu, D., Lung, R.I., Mihoc, T.D., Nagy, R. (2010). Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12239-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12239-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12238-5

  • Online ISBN: 978-3-642-12239-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics