Abstract
Standard game theory relies on the assumption that players are rational agents that try to maximize their payoff. Experiments with human players indicate that Nash equilibrium is seldom played. The goal of proposed approach is to explore more nuance equilibria by allowing a player to be biased towards different equilibria in a fuzzy manner. Several classes of equilibria (Nash, Pareto, Nash-Pareto) are defined by using appropriate generative relations. An evolutionary technique for detecting fuzzy equilibria is considered. Experimental results on Cournot’ duopoly game illustrate evolutionary detection of proposed fuzzy equilibria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bade, S., Haeringer, G., Renou, L.: More strategies, more Nash equilibria, Working Paper 2004-15, School of Economics University of Adelaide University (2004)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II KanGAL Report No. 200001, Indian Institute of Tehnology Kanpur (2000)
Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)
Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Evolutionary Equilibria Detection in Non-cooperative Games. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoStar 2009. LNCS, vol. 5484, pp. 253–262. Springer, Heidelberg (2009)
Lung, R.I., Dumitrescu, D.: Computing Nash Equilibria by Means of Evolutionary Computation. Int. J. of Computers, Communications & Control, 364–368 (2008)
Maskin, E.: The theory of implementation in Nash equilibrium: A survey. In: Hurwicz, L., Schmeidler, D., Sonnenschein, H. (eds.) Social Goals and Social Organization, pp. 173–204. Cambridge University Press, Cambridge (1985)
McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman, H.M., Kendrick, D.A., Rust, J. (eds.) Handbook of Computational Economics. Elsevier, Amsterdam (1996)
Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)
Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, New-York (2004)
Wu, S.H., Soo, V.W.: A Fuzzy Game Theoretic Approach to Multi-Agent Coordination. In: Ishida, T. (ed.) PRIMA 1998. LNCS (LNAI), vol. 1599, pp. 76–87. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dumitrescu, D., Lung, R.I., Mihoc, T.D., Nagy, R. (2010). Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12239-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-12239-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12238-5
Online ISBN: 978-3-642-12239-2
eBook Packages: Computer ScienceComputer Science (R0)