Sharp Separation and Applications to Exact and Parameterized Algorithms | SpringerLink
Skip to main content

Sharp Separation and Applications to Exact and Parameterized Algorithms

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

Many divide-and-conquer algorithms employ the fact that the vertex set of a graph of bounded treewidth can be separated in two roughly balanced subsets by removing a small subset of vertices, referred to as a separator. In this paper we prove a trade-off between the size of the separator and the sharpness with which we can fix the size of the two sides of the partition. Our result appears to be a handy and powerful tool for the design of exact and parameterized algorithms for NP-hard problems. We illustrate that by presenting two applications.

Our first application is a parameterized algorithm with running time O(16k + o(k) + n O(1)) for the Maximum Internal Subtree problem in directed graphs. This is a significant improvement over the best previously known parameterized algorithm for the problem by [Cohen et al.’09], running in time O(49.4k + n O(1)).

The second application is a O(2n + o(n)) time and space algorithm for the Degree Constrained Spanning Tree problem: find a spanning tree of a graph with the maximum number of nodes satisfying given degree constraints. This problem generalizes some well-studied problems, among them Hamiltonian Path, Full Degree Spanning Tree, Bounded Degree Spanning Tree, Maximum Internal Spanning Tree and their edge weighted variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björklund, A., Husfeldt, T.: Inclusion–Exclusion Algorithms for Counting Set Partitions. In: FOCS, pp. 575–582 (2006)

    Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast Subset Convolution. In: STOC, pp. 67–74 (2007)

    Google Scholar 

  4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved Algorithms for Path, Matching, and Packing Problems. In: SODA, pp. 298–307 (2007)

    Google Scholar 

  6. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for Finding k-Vertex Out-trees and its Application to k-Internal Out-branching Problem. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 37–46. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Fernau, H., Raible, D., Gaspers, S., Stepanov, A.A.: Exact Exponential Time Algorithms for Max Internal Spanning Tree. In: Paul, C. (ed.) WG 2009. LNCS, vol. 5911, pp. 100–111. Springer, Heidelberg (2009)

    Google Scholar 

  9. Fomin, F.V., Grandoni, F., Kratsch, D.: A Measure & Conquer Approach for the Analysis of Exact Algorithms. Journal of ACM 56(5) (2009)

    Google Scholar 

  10. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A Linear Vertex Kernel for Maximum Internal Spanning Tree. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 275–282. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Gaspers, S., Saurabh, S., Stepanov, A.A.: A Moderately Exponential Time Algorithm for Full Degree Spanning Tree. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 479–489. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS, pp. 273–282 (2006)

    Google Scholar 

  13. Gutin, G., Razgon, I., Kim, E.J.: Minimum Leaf Out-Branching Problems. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 235–246. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of SIAM 10, 196–210 (1962)

    MATH  MathSciNet  Google Scholar 

  15. Kneis, J., Molle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM J. Comput. 32, 470–487 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koivisto, M.: An O(2n) Algorithm for Graph Colouring and Other Partitioning Problems via Inclusion-Exclusion. In: FOCS, pp. 583–590 (2006)

    Google Scholar 

  18. Lawler, E.L.: A Note on the Complexity of the Chromatic Number Problem. Inform. Proc. Letters 5(3), 66–67 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lawler, E.L.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)

    Article  MathSciNet  Google Scholar 

  20. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and Near-Optimal Derandomization. In: FOCS, pp. 182–193 (1995)

    Google Scholar 

  21. Nederlof, J.: Fast polynomial-space algorithms using Mobius inversion: Improving on Steiner Tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 713–725. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Prieto, E., Sloper, C.: Reducing to Independent Set Structure – the Case of k-Internal Spanning Tree. Nord. J. Comput. 12(3), 308–318 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  24. Reed, B., Vetta, A., Smith, K.: Finding Odd Cycle Transversals. Operations Research Letters 32, 229–301 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S. (2010). Sharp Separation and Applications to Exact and Parameterized Algorithms. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics