Abstract
Many divide-and-conquer algorithms employ the fact that the vertex set of a graph of bounded treewidth can be separated in two roughly balanced subsets by removing a small subset of vertices, referred to as a separator. In this paper we prove a trade-off between the size of the separator and the sharpness with which we can fix the size of the two sides of the partition. Our result appears to be a handy and powerful tool for the design of exact and parameterized algorithms for NP-hard problems. We illustrate that by presenting two applications.
Our first application is a parameterized algorithm with running time O(16k + o(k) + n O(1)) for the Maximum Internal Subtree problem in directed graphs. This is a significant improvement over the best previously known parameterized algorithm for the problem by [Cohen et al.’09], running in time O(49.4k + n O(1)).
The second application is a O(2n + o(n)) time and space algorithm for the Degree Constrained Spanning Tree problem: find a spanning tree of a graph with the maximum number of nodes satisfying given degree constraints. This problem generalizes some well-studied problems, among them Hamiltonian Path, Full Degree Spanning Tree, Bounded Degree Spanning Tree, Maximum Internal Spanning Tree and their edge weighted variants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)
Björklund, A., Husfeldt, T.: Inclusion–Exclusion Algorithms for Counting Set Partitions. In: FOCS, pp. 575–582 (2006)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast Subset Convolution. In: STOC, pp. 67–74 (2007)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)
Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved Algorithms for Path, Matching, and Packing Problems. In: SODA, pp. 298–307 (2007)
Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for Finding k-Vertex Out-trees and its Application to k-Internal Out-branching Problem. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 37–46. Springer, Heidelberg (2009)
Diestel, R.: Graph Theory. Springer, Heidelberg (2005)
Fernau, H., Raible, D., Gaspers, S., Stepanov, A.A.: Exact Exponential Time Algorithms for Max Internal Spanning Tree. In: Paul, C. (ed.) WG 2009. LNCS, vol. 5911, pp. 100–111. Springer, Heidelberg (2009)
Fomin, F.V., Grandoni, F., Kratsch, D.: A Measure & Conquer Approach for the Analysis of Exact Algorithms. Journal of ACM 56(5) (2009)
Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A Linear Vertex Kernel for Maximum Internal Spanning Tree. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 275–282. Springer, Heidelberg (2009)
Gaspers, S., Saurabh, S., Stepanov, A.A.: A Moderately Exponential Time Algorithm for Full Degree Spanning Tree. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 479–489. Springer, Heidelberg (2008)
Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS, pp. 273–282 (2006)
Gutin, G., Razgon, I., Kim, E.J.: Minimum Leaf Out-Branching Problems. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 235–246. Springer, Heidelberg (2008)
Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of SIAM 10, 196–210 (1962)
Kneis, J., Molle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)
Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM J. Comput. 32, 470–487 (2003)
Koivisto, M.: An O(2n) Algorithm for Graph Colouring and Other Partitioning Problems via Inclusion-Exclusion. In: FOCS, pp. 583–590 (2006)
Lawler, E.L.: A Note on the Complexity of the Chromatic Number Problem. Inform. Proc. Letters 5(3), 66–67 (1976)
Lawler, E.L.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)
Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and Near-Optimal Derandomization. In: FOCS, pp. 182–193 (1995)
Nederlof, J.: Fast polynomial-space algorithms using Mobius inversion: Improving on Steiner Tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 713–725. Springer, Heidelberg (2009)
Prieto, E., Sloper, C.: Reducing to Independent Set Structure – the Case of k-Internal Spanning Tree. Nord. J. Comput. 12(3), 308–318 (2005)
Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)
Reed, B., Vetta, A., Smith, K.: Finding Odd Cycle Transversals. Operations Research Letters 32, 229–301 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S. (2010). Sharp Separation and Applications to Exact and Parameterized Algorithms. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-12200-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12199-9
Online ISBN: 978-3-642-12200-2
eBook Packages: Computer ScienceComputer Science (R0)