Lipschitz Unimodal and Isotonic Regression on Paths and Trees | SpringerLink
Skip to main content

Lipschitz Unimodal and Isotonic Regression on Paths and Trees

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

  • 1049 Accesses

Abstract

We describe algorithms for finding the regression of t, a sequence of values, to the closest sequence s by mean squared error, so that s is always increasing (isotonicity) and so the values of two consecutive points do not increase by too much (Lipschitz). The isotonicity constraint can be replaced with a unimodular constraint, for exactly one local maximum in s. These algorithm are generalized from sequences of values to trees of values. For each we describe near-linear time algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Arge, L., Yi, K.: I/O-efficient batched union-find and its applications to terrain analysis. In: Proc. 22 ACM Symp. on Comp. Geometry (2006)

    Google Scholar 

  2. Agarwal, P.K., Phillips, J.M., Sadri, B.: Lipschitz unimodal and isotonic regression on paths and trees. Technical report, arXiv:0912.5182 (2009)

    Google Scholar 

  3. Angelov, S., Harb, B., Kannan, S., Wang, L.-S.: Weighted isotonic regression under the l 1 norm. In: Proc. 17th ACM-SIAM Symp. on Discrete Algorithms (2006)

    Google Scholar 

  4. Attali, D., Glisse, M., Hornus, S., Lazarus, F., Morozov, D.: Persistence-sensitive simplification of functions on surfaces in linear time. INRIA (2008) (manuscript)

    Google Scholar 

  5. Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., Silverman, E.: An empirical distribution function for sampling with incomplete information. Annals of Mathematical Statistics 26, 641–647 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bajaj, C., Pascucci, V., Schikore, D.: Visualization of scalar topology for structural enhancement. In: IEEE Visualization, pp. 51–58 (1998)

    Google Scholar 

  7. Barlow, R.E., Bartholomew, D.J., Bremmer, J.M., Brunk, H.D.: Statistical Inference Under Order Restrictions: The Theory and Application of Isotonic Regression. John Wiley and Sons, Chichester (1972)

    MATH  Google Scholar 

  8. Bremer, P., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional morse functions. In: Proceedings 14th IEEE Visualization Conference, pp. 139–146 (2003)

    Google Scholar 

  9. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. Alg. 15, 416–446 (1979)

    Google Scholar 

  10. Brunk, H.D.: Maximum likelihood estimates of monotone parameters. Annals of Mathematical Statistics 26, 607–616 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  11. Danner, A., Mølhave, T., Yi, K., Agarwal, P.K., Arge, L., Mitasova, H.: Terrastream: from elevation data to watershed hierarchies. In: 15th ACM International Symposium on Advances in Geographic Information Systems (2007)

    Google Scholar 

  12. Edelsbrunner, H., Harer, J.: Persistent Homology: A Survey. Contemporary Mathematics, vol. 453. American Mathematical Society, Providence (2008)

    Google Scholar 

  13. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proc. 41 Symp. on Foundatons of Computer Science (2000)

    Google Scholar 

  14. Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification functions on 2-manifolds. In: Proc. 22 ACM Symp. on Comp. Geometry (2006)

    Google Scholar 

  15. Frederickson, G.N., Johnson, D.B.: The complexity of selection and ranking in x + y and matrices with sorted columns. J. Comput. Syst. Sci. 24, 192–208 (1982)

    MathSciNet  Google Scholar 

  16. Grotzinger, S.J., Witzgall, C.: Projection onto order simplexes. Applications of Mathematics and Optimization 12, 247–270 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guskov, I., Wood, Z.J.: Topological noise removal. In: Graphics Interface (2001)

    Google Scholar 

  18. Jewel, W.S.: Isotonic optimization in tariff construction. ASTIN 8, 175–203 (1975)

    Google Scholar 

  19. Maxwell, W.L., Muckstadt, J.A.: Establishing consistent and realistic reorder intervals in production-distribution systems. Operations Res. 33, 1316–1341 (1985)

    Article  MATH  Google Scholar 

  20. Ni, X., Garland, M., Hart, J.C.: Fair Morse functions for extracting the topological structure of a surface mesh. ACM Transact. Graphics 23, 613–622 (2004)

    Article  Google Scholar 

  21. Pardalos, P.M., Xue, G.: Algorithms for a class of isotonic regression problems. Algorithmica 23, 211–222 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Springer, New York (1985)

    Google Scholar 

  23. Soille, P., Vogt, J., Cololmbo, R.: Carbing and adaptive drainage enforcement of grid digital elevation models. Water Resources Research 39(12), 1366–1375 (2003)

    Article  Google Scholar 

  24. Spouge, J., Wan, H., Wilbur, W.J.: Least squares isotonic regression in two dimensions. Journal of Optimization Theory and Applications 117, 585–605 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stout, Q.F.: Optimal algorithms for unimodal regression. Computing Science and Statistics 32, 348–355 (2000)

    Google Scholar 

  26. Stout, Q.F.: Unimodal regression via prefix isotonic regression. Computational Statistics and Data Analysis 53, 289–297 (2008)

    Article  MATH  Google Scholar 

  27. Thompson Jr., W.A.: The problem of negative estimates of variance components. Annals of Mathematical Statistics 33, 273–289 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zomorodian, A.: Computational topology. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook. Chapman & Hall/CRC Press (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Phillips, J.M., Sadri, B. (2010). Lipschitz Unimodal and Isotonic Regression on Paths and Trees. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics