Semi-supervised Distance Metric Learning in High-Dimensional Spaces by Using Equivalence Constraints | SpringerLink
Skip to main content

Semi-supervised Distance Metric Learning in High-Dimensional Spaces by Using Equivalence Constraints

  • Conference paper
Computer Vision, Imaging and Computer Graphics. Theory and Applications (VISIGRAPP 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 68))

Abstract

This paper introduces a semi-supervised distance metric learning algorithm which uses pairwise equivalence (similarity and dissimilarity) constraints to discover the desired groups within high-dimensional data. In contrast to the traditional full rank distance metric learning algorithms, the proposed method can learn nonsquare projection matrices that yield low rank distance metrics. This brings additional benefits such as visualization of data samples and reducing the storage cost, and it is more robust to overfitting since the number of estimated parameters is greatly reduced. The proposed method works in both the input and kernel induced-feature space, and the distance metric is found by a gradient descent procedure that involves an eigen-decomposition in each step. Experimental results on high-dimensional visual object classification problems show that the computed distance metric improves the performances of the subsequent classification and clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. An, S., Liu, W., Venkatesh, S.: Exploiting Side Information in Locality Preserving Projection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  2. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning Distance Functions Using Equivalence Relations. In: International Conference on Machine Learning (2003)

    Google Scholar 

  3. Basu, S., Banerjee, A., Mooney, R.J.: Active Semi-Supervision for Pairwise Constrained Clustering. In: The SIAM International Conference on Data Mining (2004)

    Google Scholar 

  4. Bilenko, M., Basu, S., Mooney, R.J.: Integrating Constraints and Metric Learning in Semi-Supervised Clustering. In: International Conference on Machine Learning (2004)

    Google Scholar 

  5. Cevikalp, H., Verbeek, J., Jurie, F., Klaser, A.: Semi-Supervised Dimensionality Reduction Using Pairwise Equivalence Constraints. In: International Conference on Computer Vision Theory and Applications (2008)

    Google Scholar 

  6. Chen, H.T., Liu, T.L., Fuh, C.S.: Learning effective Image Metrics From Few Pairwise Examples. In: IEEE International Conference on Computer Vision (2005)

    Google Scholar 

  7. Davis, J.V., Kulis, B., Jain, P., Dhillon, I.S.: Information-Theoretic Metric Learning. In: International Conference on Machine Learning (2007)

    Google Scholar 

  8. Globerson, A., Roweis, S.: Metric Learning by Collapsing Classes. In: Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  9. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood Component Analysis. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  10. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality Reduction by Learning and Invariant Mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  11. He, X., Niyogi, P.: Locality Preserving Directions. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  12. Hertz, T., Shental, N., Bar-Hillel, A., Weinshall, D.: Enhancing Image and Video Retrieval: Learning Via Equivalence Constraints. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  13. Kwok, J.T., Tsan, I.W.: Learning with Idealized Kernels. In: International Conference on Machine Learning (2003)

    Google Scholar 

  14. Lazebnik, S., Schmid, C., Ponce, J.: A Maximum Entropy Framework for Part-Based Texture and Objcect Recognition. In: International Conference on Computer Vision (ICCV) (2005)

    Google Scholar 

  15. Li, Z., Liu, J., Tang, X.: Pairwise Constraint Propogation by Semidefinite Programming for Semi-Supervised Classification. In: International Conference on Machine Learning, ICML (2008)

    Google Scholar 

  16. Scholkopf, B., Smola, A.J., Muller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  17. Shalev-Shwartz, S., Singer, Y., Ng, A.Y.: Online and Batch Learning of Pseudo Metrics. In: International Conference on Machine Learning (2004)

    Google Scholar 

  18. Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian Mixture Modles with EM Using Equivalence Constraints. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  19. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on PAMI 22, 885–905 (2000)

    Google Scholar 

  20. Torresani, L., Lee, K.C.: Large Margin Component Analysis. In: Advances in Neural Information Processing Systems (2006)

    Google Scholar 

  21. Turk, M., Pentland, A.P.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  22. Van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Villegas, M., Paredes, R.: Simultaneous learning of a Discriminative Projection and Prototype for Nearest-Neighbor Classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  24. Wagstaff, K., Rogers, S.: On subharmonic solutions of a Hamiltonian system. Constrained K-means Clustering with Background Knowledge. In: International Conference on Machine Learning (2001)

    Google Scholar 

  25. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. In: Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  26. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance Metric Learning with Application to Clustering with Side-Information. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  27. Yan, B., Domeniconi, C.: Subspace Metric Ensembles for Semi-Supervised Clustering of High Dimensional Data. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 509–520. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Yang, L., Jin, R., Sukthankar, R.: Bayesian Active Distance Metric Learning. In: Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (2007)

    Google Scholar 

  29. Yang, L., Jin, R.: Distance Metric Learning: A Comprehensive Survey (2006), http://wwww.cse.msu.edu/~yangliu1/framesurveyv2.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cevikalp, H. (2010). Semi-supervised Distance Metric Learning in High-Dimensional Spaces by Using Equivalence Constraints. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2009. Communications in Computer and Information Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11840-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11840-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11839-5

  • Online ISBN: 978-3-642-11840-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics