Abstract
A common problem in spoken dialogue systems is finding the intention of the user. This problem deals with obtaining one or several topics for each transcribed, possibly noisy, sentence of the user. In this work, we apply the recent unsupervised learning method, Hidden Topic Markov Models (HTMM), for finding the intention of the user in dialogues. This technique combines two methods of Latent Dirichlet Allocation (LDA) and Hidden Markov Model (HMM) in order to learn topics of documents. We show that HTMM can be also used for obtaining intentions for the noisy transcribed sentences of the user in spoken dialogue systems. We argue that in this way we can learn possible states in a speech domain which can be used in the design stage of its spoken dialogue system. Furthermore, we discuss that the learned model can be augmented and used in a POMDP (Partially Observable Markov Decision Process) dialogue manager of the spoken dialogue system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atrash, A., Pineau, J.: Efficient planning and tracking in pomdps with large observation spaces. In: AAAI 2006 Workshop on Empirical and Statistical Approaches for Spoken Dialogue Systems (2006)
Blei, D.M., Moreno, P.J.: Topic segmentation with an aspect hidden Markov model. In: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR 2001), pp. 343–348 (2001)
Church, K.W.: A stochastic parts program and noun phrase parser for unrestricted text. In: Proceedings of the second conference on Applied Natural Language Processing (ANLP 1988), Morristown, NJ, USA, pp. 136–143 (1988)
Doshi, F., Roy, N.: Efficient model learning for dialog management. In: Proceedings of the ACM/IEEE international conference on Human-Robot Interaction (HRI 2007), pp. 65–72 (2007)
Griffiths, T., Steyvers, J.: Finding scientific topics. Proceedings of the National Academy of Science 101, 5228–5235 (2004)
Gruber, A., Rosen-Zvi, M., Weiss, Y.: Hidden Topic Markov Models. In: Artificial Intelligence and Statistics (AISTATS 2007), San Juan, Puerto Rico (2007)
Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the fifteenth conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 289–296 (1999)
Levin, E., Pieraccini, R., Eckert, W.: Learning dialogue strategies within the Markov decision process framework. In: 1997 IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 72–79 (1997)
Ortiz, L.E., Kaelbling, L.P.: Accelerating EM: An empirical study. In: Proceedings of the fifteenth conference on Uncertainty in Artificial Intelligence (UAI 1999), Stockholm, Sweden, pp. 512–521 (1999)
Paek, Tim, Chickering, David: Evaluating the Markov assumption in Markov Decision Processes for spoken dialogue management. Language Resources and Evaluation 40(1), 47–66 (2006)
Pietquin, O., Dutoit, T.: A probabilistic framework for dialog simulation and optimal strategy learning. IEEE Transactions on Audio, Speech, and Language Processing 14(2), 589–599 (2006)
Pineau, J., Atrash, A.: Smartwheeler: A robotic wheelchair test-bed for investigating new models of human-robot interaction. In: AAAI Spring Symposium on Multidisciplinary Collaboration for Socially Assistive Robotics (2007)
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. pp. 267–296 (1990)
Singh, S.P., Kearns, M.J., Litman, D.J., Walker, M.A.: Empirical evaluation of a reinforcement learning spoken dialogue system. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 645–651. AAAI Press / The MIT Press (2000)
Walker, M., Passonneau, R.: DATE: a dialogue act tagging scheme for evaluation of spoken dialogue systems. In: Proceedings of the first international conference on Human Language Rechnology research (HLT 2001), Morristown, NJ, USA, pp. 1–8. Association for Computational Linguistics (2001)
Walker, M.A.: An application of reinforcement learning to dialogue strategy selection in a spoken dialogue system for email. Journal of Artificial Intelligence Research (JAIR) 12, 387–416 (2000)
Walker, M.A., Litman, D.J., Kamm, A.A., Abella, A.: PARADISE: A Framework for Evaluating Spoken Dialogue Agents. In: Proceedings of the Thirty-Fifth Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics, Somerset, New Jersey, pp. 271–280. Association for Computational Linguistics (1997)
Walker, M.A., Passonneau, R.J., Boland, J.E.: Quantitative and qualitative evaluation of darpa communicator spoken dialogue systems. In: Meeting of the Association for Computational Linguistics, pp. 515–522 (2001)
Weilhammer, K., Williams, J.D., Young, S.: The SACTI-2 Corpus: Guide for Research Users, Cambridge University. Technical report (2004)
Williams, J.D., Poupart, P., Young, S.: Factored partially observable markov decision processes for dialogue management. In: The 4th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Edinburgh, Scotland (2005)
Williams, J.D., Young, S.: Characterizing task-oriented dialog using a simulated asr channel. In: Proceedings of International Conference on Spoken Language Processing (ICSLP 2004), Jeju, South Korea (2004)
Williams, J.D., Young, S.: Partially observable markov decision processes for spoken dialog systems. Computer Speech and Language 21, 393–422 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chinaei, H.R., Chaib-draa, B., Lamontagne, L. (2010). Application of Hidden Topic Markov Models on Spoken Dialogue Systems. In: Filipe, J., Fred, A., Sharp, B. (eds) Agents and Artificial Intelligence. ICAART 2009. Communications in Computer and Information Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11819-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-11819-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11818-0
Online ISBN: 978-3-642-11819-7
eBook Packages: Computer ScienceComputer Science (R0)