Exponent Monte Carlo for Quick Statistical Circuit Simulation | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5953))

  • 1244 Accesses

Abstract

The main goals of this article are to report an implementation and a quantitative study of Exponent Monte Carlo, an enhanced version of Monte Carlo for verifying high circuit yield in the presence of random process variations. Results on industry-grade standard cell netlists and compact models in 45nm show that EMC predicts reasonable results at least 1,000 times faster than MC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asenov, A., et al.: Advanced simulation of statistical variability and reliability in nano CMOS transistors. In: IEDM 2008 (2008)

    Google Scholar 

  2. Centurelli, F., Giancane, L., Olivieri, M., Scotti, G., Trifiletti, A.: A Statistical Model of Logic Gates for Monte Carlo Simulation Including On-Chip Variations. In: Azémard, N., Svensson, L. (eds.) PATMOS 2007. LNCS, vol. 4644, pp. 516–525. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Dierickx, B., et al.: Propagating variability from technology to system level. In: Physics of Semiconductor Devices, Mumbai, pp. 74–79 (2007)

    Google Scholar 

  4. Hammersley, J.M., Handscomb, D.C.: Monte Carlo methods. Chapman and Hall, London (1983)

    Google Scholar 

  5. Doorn, T.S., ter Maten, E.J.W., Croon, J.A., Di Bucchianico, A., Wittich, O.: Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield. In: ESSCIRC 2008 (2008)

    Google Scholar 

  6. Hocevar, D.E., Lightner, M.R., Trick, T.N.: A Study of Variance Reduction Techniques for Estimating Circuit Yields. IEEE TCAD 2(3), 180–192 (1983)

    Google Scholar 

  7. Kahn, H., Marshall, A.W.: Methods of reducing sample size in Monte Carlo computations. J. Oper. Res. Soc. Amer. 1, 263 (1953)

    Google Scholar 

  8. Kanj, R., Joshi, R., Nassif, S.: Mixture importance sampling and its application to the analysis of SRAM designs in the presence of rare failure events. In: DAC 2006 (2006)

    Google Scholar 

  9. Kanj, R., Joshi, R.V., Kuang, J.B., Kim, J., Meterelliyoz, M., Reohr, W., Nassif, S.R., Nowka, K.J.: Statistical yield analysis of silicon-on-insulator embedded DRAM. In: ISQED (2009)

    Google Scholar 

  10. Kosbar, K.L., Chang, T.F.: Conservative confidence intervals of importance sampling estimates. In: MILCOM 1992 (1992)

    Google Scholar 

  11. Kukimoto, Y., Berkelaar, M., Sakallah, K.: Static timing analysis. In: Hassoun, S., Sasao, T. (eds.) Logic Synthesis and Verification. Kluwer International Series In Engineering And Computer Science Series, vol. 654. Kluwer, Dordrecht (2002)

    Google Scholar 

  12. Matvejev, V.: Optimal Gamma in Exponent Monte Carlo Simulation of SRAM. Master’s thesis, Univ. Furtwangen (2009)

    Google Scholar 

  13. Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Statistical design and optimization of SRAM cell for yield enhancement. In: ICCAD 2004 (2004)

    Google Scholar 

  14. Pelgrom, M., Duinmaijer, A., Welbers, A.: Matching properties of MOS transistors. Solid-State Circuits 24(5), 1433–1439 (1989)

    Article  Google Scholar 

  15. Singhee, A., Rutenbar, R.A.: Statistical Blockade: A Novel Method for Very Fast Monte Carlo Simulation of Rare Circuit Events, and its Application. In: DATE 2007 (2007)

    Google Scholar 

  16. Singhee, A., Singhal, S., Rutenbar, R.A.: Practical, fast Monte Carlo statistical static timing analysis: why and how. In: ICCAD 2008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zuber, P., Matvejev, V., Roussel, P., Dobrovolný, P., Miranda, M. (2010). Exponent Monte Carlo for Quick Statistical Circuit Simulation. In: Monteiro, J., van Leuken, R. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2009. Lecture Notes in Computer Science, vol 5953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11802-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11802-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11801-2

  • Online ISBN: 978-3-642-11802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics