Abstract
The main goals of this article are to report an implementation and a quantitative study of Exponent Monte Carlo, an enhanced version of Monte Carlo for verifying high circuit yield in the presence of random process variations. Results on industry-grade standard cell netlists and compact models in 45nm show that EMC predicts reasonable results at least 1,000 times faster than MC.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asenov, A., et al.: Advanced simulation of statistical variability and reliability in nano CMOS transistors. In: IEDM 2008 (2008)
Centurelli, F., Giancane, L., Olivieri, M., Scotti, G., Trifiletti, A.: A Statistical Model of Logic Gates for Monte Carlo Simulation Including On-Chip Variations. In: Azémard, N., Svensson, L. (eds.) PATMOS 2007. LNCS, vol. 4644, pp. 516–525. Springer, Heidelberg (2007)
Dierickx, B., et al.: Propagating variability from technology to system level. In: Physics of Semiconductor Devices, Mumbai, pp. 74–79 (2007)
Hammersley, J.M., Handscomb, D.C.: Monte Carlo methods. Chapman and Hall, London (1983)
Doorn, T.S., ter Maten, E.J.W., Croon, J.A., Di Bucchianico, A., Wittich, O.: Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield. In: ESSCIRC 2008 (2008)
Hocevar, D.E., Lightner, M.R., Trick, T.N.: A Study of Variance Reduction Techniques for Estimating Circuit Yields. IEEE TCAD 2(3), 180–192 (1983)
Kahn, H., Marshall, A.W.: Methods of reducing sample size in Monte Carlo computations. J. Oper. Res. Soc. Amer. 1, 263 (1953)
Kanj, R., Joshi, R., Nassif, S.: Mixture importance sampling and its application to the analysis of SRAM designs in the presence of rare failure events. In: DAC 2006 (2006)
Kanj, R., Joshi, R.V., Kuang, J.B., Kim, J., Meterelliyoz, M., Reohr, W., Nassif, S.R., Nowka, K.J.: Statistical yield analysis of silicon-on-insulator embedded DRAM. In: ISQED (2009)
Kosbar, K.L., Chang, T.F.: Conservative confidence intervals of importance sampling estimates. In: MILCOM 1992 (1992)
Kukimoto, Y., Berkelaar, M., Sakallah, K.: Static timing analysis. In: Hassoun, S., Sasao, T. (eds.) Logic Synthesis and Verification. Kluwer International Series In Engineering And Computer Science Series, vol. 654. Kluwer, Dordrecht (2002)
Matvejev, V.: Optimal Gamma in Exponent Monte Carlo Simulation of SRAM. Master’s thesis, Univ. Furtwangen (2009)
Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Statistical design and optimization of SRAM cell for yield enhancement. In: ICCAD 2004 (2004)
Pelgrom, M., Duinmaijer, A., Welbers, A.: Matching properties of MOS transistors. Solid-State Circuits 24(5), 1433–1439 (1989)
Singhee, A., Rutenbar, R.A.: Statistical Blockade: A Novel Method for Very Fast Monte Carlo Simulation of Rare Circuit Events, and its Application. In: DATE 2007 (2007)
Singhee, A., Singhal, S., Rutenbar, R.A.: Practical, fast Monte Carlo statistical static timing analysis: why and how. In: ICCAD 2008 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zuber, P., Matvejev, V., Roussel, P., Dobrovolný, P., Miranda, M. (2010). Exponent Monte Carlo for Quick Statistical Circuit Simulation. In: Monteiro, J., van Leuken, R. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2009. Lecture Notes in Computer Science, vol 5953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11802-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-11802-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11801-2
Online ISBN: 978-3-642-11802-9
eBook Packages: Computer ScienceComputer Science (R0)