Automatic Detection of Atrial Fibrillation for Mobile Devices | SpringerLink
Skip to main content

Automatic Detection of Atrial Fibrillation for Mobile Devices

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2009)

Abstract

Two versions of a new detector for automatic real-time detection of atrial fibrillation in non-invasive ECG signals are introduced. The methods are based on beat to beat variability, tachogram analysis and simple signal filtering. The implementation on mobile devices is made possible due to the low demand on computing power of the employed analysis procedures. The proposed algorithms correctly identified 436 of 440 five minute episodes of atrial fibrillation or flutter and also correctly identified up to 302 of 342 episodes of no atrial fibrillation, including normal sinus rhythm as well as other cardiac arrhythmias. These numbers correspond to a sensitivity of 99.1 % and a specificity of 88.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heeringa, J., van der Kuip, D., Hofman, A., Kors, J., van Herpen, G., Stricker, B., Stijnen, T., Lip, G., Witteman, J.: Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Europace (2006)

    Google Scholar 

  2. Ringborg, A., Nieuwlaat, R., Lindgren, P., Jönsson, B., Fidan, D., Maggioni, A., Lopez-Sendon, J., Stepinska, J., Cokkinos, D., Crijns, H.: Costs of atrial fibrillation in five European countries: results from the Euro Heart Survey on atrial fibrillation. Europace 10, 403–411 (2008)

    Article  Google Scholar 

  3. Hohnloser, P.D.S., Grönefeld, P.D.D.G., Israel, P.D.D.C.: Prophylaxe und Therapie von Vorhofflimmern, 1st edn. UNI-MED Verlag, Bremen (2005)

    Google Scholar 

  4. Kim, J., Bocek, J., White, H., Crone, B., Alferness, C., Adams, J.: An atrial fibrillation detection algorithm for an implantable atrial defibrillator, 169–172 (1995)

    Google Scholar 

  5. Logan, B., Healey, J.: Robust Detection of Arial Fibrillation for a a Long Term Telemonitoring System. IEEE Computers for Cardiology, 391–394 (2005)

    Google Scholar 

  6. Tateno, K., Glass, L.: A Method for Detection of Atrial Fibrillation using RR Intervals. IEEE Computers for Cardiology, 391–394 (2000)

    Google Scholar 

  7. Artis, S., Mark, R., Moody, G.: Detection of Atrial Fibrillation using Artificial Neural Networks. IEEE Proceedings on Computers in Cardiology, 173–176 (1991)

    Google Scholar 

  8. Sadek, L.E., Ropella, K.M.: Detection of Atrial Fibrillation from the Surface Electrocardiogram using Magnitude-Squared Coherence. IEEE Engineering in Medicine and Biology Society 1, 179–180 (1995)

    Google Scholar 

  9. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000); Circulation Electronic Pages, http://circ.ahajournals.org/cgi/content/full/101/23/e215

  10. Kirst, M., Ottenbacher, J., Nedkov, R.: UNISENS – Ein universelles Datenformat für Multisensordaten. In: Biosignalverarbeitung : Innovationen bei der Erfassung und Analyse bioelektrischer und biomagnetischer Signale, pp. 106–108 (2008)

    Google Scholar 

  11. Kirst, M., Ottenbacher, J.: Unisens (2008), http://www.unisens.org

  12. Hamilton, P.: Open Source ECG Analysis. IEEE Computers in Cardiology, 101–104 (2002)

    Google Scholar 

  13. Chu, C.H.H., Delp, E.J.: Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators. IEEE Transactions on Biomedical Engineering 36(2), 262–273 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaiser, S., Kirst, M., Kunze, C. (2010). Automatic Detection of Atrial Fibrillation for Mobile Devices. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2009. Communications in Computer and Information Science, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11721-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11721-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11720-6

  • Online ISBN: 978-3-642-11721-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics