Abstract
Two versions of a new detector for automatic real-time detection of atrial fibrillation in non-invasive ECG signals are introduced. The methods are based on beat to beat variability, tachogram analysis and simple signal filtering. The implementation on mobile devices is made possible due to the low demand on computing power of the employed analysis procedures. The proposed algorithms correctly identified 436 of 440 five minute episodes of atrial fibrillation or flutter and also correctly identified up to 302 of 342 episodes of no atrial fibrillation, including normal sinus rhythm as well as other cardiac arrhythmias. These numbers correspond to a sensitivity of 99.1 % and a specificity of 88.3%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Heeringa, J., van der Kuip, D., Hofman, A., Kors, J., van Herpen, G., Stricker, B., Stijnen, T., Lip, G., Witteman, J.: Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Europace (2006)
Ringborg, A., Nieuwlaat, R., Lindgren, P., Jönsson, B., Fidan, D., Maggioni, A., Lopez-Sendon, J., Stepinska, J., Cokkinos, D., Crijns, H.: Costs of atrial fibrillation in five European countries: results from the Euro Heart Survey on atrial fibrillation. Europace 10, 403–411 (2008)
Hohnloser, P.D.S., Grönefeld, P.D.D.G., Israel, P.D.D.C.: Prophylaxe und Therapie von Vorhofflimmern, 1st edn. UNI-MED Verlag, Bremen (2005)
Kim, J., Bocek, J., White, H., Crone, B., Alferness, C., Adams, J.: An atrial fibrillation detection algorithm for an implantable atrial defibrillator, 169–172 (1995)
Logan, B., Healey, J.: Robust Detection of Arial Fibrillation for a a Long Term Telemonitoring System. IEEE Computers for Cardiology, 391–394 (2005)
Tateno, K., Glass, L.: A Method for Detection of Atrial Fibrillation using RR Intervals. IEEE Computers for Cardiology, 391–394 (2000)
Artis, S., Mark, R., Moody, G.: Detection of Atrial Fibrillation using Artificial Neural Networks. IEEE Proceedings on Computers in Cardiology, 173–176 (1991)
Sadek, L.E., Ropella, K.M.: Detection of Atrial Fibrillation from the Surface Electrocardiogram using Magnitude-Squared Coherence. IEEE Engineering in Medicine and Biology Society 1, 179–180 (1995)
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000); Circulation Electronic Pages, http://circ.ahajournals.org/cgi/content/full/101/23/e215
Kirst, M., Ottenbacher, J., Nedkov, R.: UNISENS – Ein universelles Datenformat für Multisensordaten. In: Biosignalverarbeitung : Innovationen bei der Erfassung und Analyse bioelektrischer und biomagnetischer Signale, pp. 106–108 (2008)
Kirst, M., Ottenbacher, J.: Unisens (2008), http://www.unisens.org
Hamilton, P.: Open Source ECG Analysis. IEEE Computers in Cardiology, 101–104 (2002)
Chu, C.H.H., Delp, E.J.: Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators. IEEE Transactions on Biomedical Engineering 36(2), 262–273 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaiser, S., Kirst, M., Kunze, C. (2010). Automatic Detection of Atrial Fibrillation for Mobile Devices. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2009. Communications in Computer and Information Science, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11721-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-11721-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11720-6
Online ISBN: 978-3-642-11721-3
eBook Packages: Computer ScienceComputer Science (R0)