More Efficient Periodic Traversal in Anonymous Undirected Graphs | SpringerLink
Skip to main content

More Efficient Periodic Traversal in Anonymous Undirected Graphs

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2009)

Abstract

We consider the problem of periodic graph exploration in which a mobile entity with (at most) constant memory, an agent, has to visit all n nodes of an arbitrary undirected graph G in a periodic manner. Graphs are supposed to be anonymous, that is, nodes are unlabeled. However, while visiting a node, the robot has to distinguish between edges incident to it. For each node v the endpoints of the edges incident to v are uniquely identified by different integer labels called port numbers. We are interested in the minimisation of the length of the exploration period.

This problem is unsolvable if the local port numbers are set arbitrarily, see [1]. However, surprisingly small periods can be achieved when assigning carefully the local port numbers. Dobrev et al. [2] described an algorithm for assigning port numbers, and an oblivious agent (i.e., an agent with no persistent memory) using it, such that the agent explores all graphs of size n within period 10n. Providing the agent with a constant number of memory bits, the optimal length of the period was proved in [3] to be no more than 3.75n (using a different assignment of the port numbers). In this paper, we improve both these bounds. More precisely, we show a period of length at most \(4\frac{1}{3}n\) for oblivious agents, and a period of length at most 3.5n for agents with constant memory. Finally, we give the first non-trivial lower bound, 2.8n, on the period length for the oblivious case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Budach, L.: Automata and labyrinths. Mathematische Nachrichten, 195–282 (1978)

    Google Scholar 

  2. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.K.: Finding short right-hand-on-the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 127–139. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Gąsieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. J. Computer and System Science 74(5), 808–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Transactions on Algorithms 4(4), 331–344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rollik, H.: Automaten in planaren graphen. Acta Informatica 13, 287–298 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Computing 29, 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. Information and Computation 176(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bender, M., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. 35th Annual Symposium on Foundations of Computer Science (FOCS), pp. 75–85 (1994)

    Google Scholar 

  9. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Proc. 13th Annual European Symposium on Algorithms (ESA), pp. 11–22 (2005)

    Google Scholar 

  11. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a mobile robot. Information and Computation 152(2), 155–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Machine Learning 18(2-3), 231–254 (1995)

    Article  Google Scholar 

  13. Duncan, C., Kobourov, S., Kumar, V.: Optimal constrained graph exploration. ACM Transaction on Algorithms 2(3), 380–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: The reduced automata technique for graph exploration space lower bounds. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 1–26. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cook, S.A., Rackoff, C.: Space lower bounds for maze threadability on restricted machines. SIAM J. Computing 9(3), 636–652 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garey, M., Johnson, D., Tarjan, R.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Computing 5(4), 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ilcinkas, D.: Setting port numbers for fast graph exploration. Theoretical Computer Science 401, 236–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J. et al. (2010). More Efficient Periodic Traversal in Anonymous Undirected Graphs. In: Kutten, S., Žerovnik, J. (eds) Structural Information and Communication Complexity. SIROCCO 2009. Lecture Notes in Computer Science, vol 5869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11476-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11476-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11475-5

  • Online ISBN: 978-3-642-11476-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics