The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth Graphs | SpringerLink
Skip to main content

The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth Graphs

  • Conference paper
Internet and Network Economics (WINE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5929))

Included in the following conference series:

  • 2475 Accesses

Abstract

The Stackelberg Minimum Spanning Tree Game is a two-level combinatorial pricing problem introduced at WADS’07. The game is played on a graph, whose edges are colored either red or blue, and where the red edges have a given fixed cost. The first player chooses an assignment of prices to the blue edges, and the second player then buys the cheapest spanning tree, using any combination of red and blue edges. The goal of the first player is to maximize the total price of purchased blue edges. We study this problem in the cases of planar and bounded-treewidth graphs. We show that the problem is NP-hard on planar graphs but can be solved in polynomial time on graphs of bounded treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth, and well-quasiordering. In: Robertson, N., Seymour, P. (eds.) Graph Structure Theory, pp. 539–564 (1993)

    Google Scholar 

  2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)

    Article  MATH  Google Scholar 

  3. Bilò, D., Gualà, L., Proietti, G., Widmayer, P.: Computational aspects of a 2-player Stackelberg shortest paths tree game. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 251–262. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Briest, P., Hoefer, M., Krysta, P.: Stackelberg network pricing games. In: Proc. 25th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 133–142 (2008)

    Google Scholar 

  5. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O.: The Stackelberg minimum spanning tree game. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 64–76. Springer, Heidelberg (2007) (to appear in Algorithmica)

    Chapter  Google Scholar 

  7. Courcelle, B.: Graph structure and monadic second-order logic: Language theoretical aspects. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 1–13. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Approximation algorithms via structural results for apex-minor-free graphs. In: Proc. 36th International Colloquium on Automata, Languages and Programming, ICALP (2009)

    Google Scholar 

  9. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 278–287 (2007)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  11. Grigoriev, A., van Loon, J., Sitters, R., Uetz, M.: Optimal pricing of capacitated networks. Networks 53(1), 79–87 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proc. 38th ACM Symposium on Theory of Computing (STOC), pp. 749–756 (2006)

    Google Scholar 

  13. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Management Science 44(12), 1608–1622 (1998)

    Article  MATH  Google Scholar 

  14. Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing. Networks 46(1), 57–67 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput. 11(2), 298–313 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Newman, I., Weimann, O. (2009). The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth Graphs. In: Leonardi, S. (eds) Internet and Network Economics. WINE 2009. Lecture Notes in Computer Science, vol 5929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10841-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10841-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10840-2

  • Online ISBN: 978-3-642-10841-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics