Abstract
In this paper we propose two new types of compression functions, based on quasigroup string transformations. The first type uses known quasigroup string transformations, defined elsewhere, by changing alternately the transformation direction, going forward and backward through the string. Security of this design depends of the chosen quasigroup string transformation, the order of the quasigroup and the properties satisfied by the quasigroup operations. We illustrate how this type of compression function is applied in the design of the cryptographic hash function NaSHA. The second type of compression function uses new generic quasigroup string transformation, which combine two orthogonal quasigroup operations into a single one. This, in fact, is deployment of the concept of multipermutation for perfect generation of confusion and diffusion. One implementation of this transformation is by extended Feistel network F A,B,C which has at least two orthogonal mates as orthomorphisms: its inverse \(F^{-1}_{A,B,C}\) and its square \(F^{2}_{A,B,C}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Markovski, S., Gligoroski, D., Andova, S.: Using Quasigroups for one-one Secure Encoding. In: Proceedings of VIII Conference on Logic and Computer Science, LIRA 1997, Novi Sad, pp. 157–162 (1997)
Dvorský, J., Ochodková, E., Snášel, V.: Hash Function based on Large Quasigroups. In: Proceedings of Velikonocni kriptologie, Brno, pp. 1–9 (2002)
Snášel, V., Abraham, A., Dvorský, J., Krömer, P., Platoš, J.: Hash Function based on Large Quasigroups. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 521–529. Springer, Heidelberg (2009)
Markovski, S., Gligoroski, D., Bakeva, V.: On Infinite Class of Strongly Collision Resistant Hash Functions “Edon-F” with Variable Length of Output. In: Proceedings of 1st Conference on Discrete Mathematics and Informatics for Industry, Thessaloniki, pp. 302–308 (2003)
Gligoroski, D., Markovski, S., Kocarev, L.: Edon-R, an Infinite Family of Cryptographic Hash Functions. In: The Second NIST Cryptographic Hash Workshop, UCSB, Santa Barbara, pp. 275–285 (2006)
Gligoroski, D., Knapskog, S.J.: Edon-R (256, 384, 512) - an Efficient Implementation of Edon-R Family of Cryptographic Hash Functions. Cryptology ePrint Archive, Report 2007/154 (2007)
Gligoroski, D., Ødegård, R.S., Mihova, M., Knapskog, S.J., Kocarev, L., Drápal, A., Klima, V.: Cryptographic Hash Function Edon-R. Submission to NIST SHA-3 competition (2008)
Gligoroski, D.: Candidate one-way Functions and one-way Permutations based on quasigroup String Transformations. Cryptology ePrint Archive, Report 2005, 352 (2005)
Markovski, S., Gligoroski, D., Bakeva, V.: Quasigroup String Processing – Part I. Contributions, Sec. Math. Tech. Sci., MANU, XX, 1-2, 13–28 (1999)
Markovski, S., Mileva, A.: Generating huge quasigroups from small non-linear bijections via extended Feistel network. Quasigroups and Related Systems 17, 91–106 (2009)
Markovski, S., Mileva, A.: NaSHA. Submission to NIST SHA-3 competition (2008)
National Institute of Standards and Technology: Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register 72(212), 62212–62220 (November 2007)
Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
Wang, X., Yu, H., Yin, L.: Efficient Collision Search Attacks on SHA-0. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)
Wang, X., Yin, L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
Schnorr, C.P., Vaudenay, S.: Black Box Cryptanalysis of Hash Networks Based on Multipermutations. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 47–57. Springer, Heidelberg (1995)
Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)
Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)
Ji, L., Liangyu, X., Xu, G.: Collision attacks on NaSHA-512. Cryptology ePrint Archive, Report 2008/519 (2008)
Markovski, S., Mileva, A.: NaSHA. In: First SHA-3 Candidate Conference (2008), http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/documents/NaSHAforweb.pdf
Vaudenay, S.: On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer, Heidelberg (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mileva, A., Markovski, S. (2010). Quasigroup String Transformations and Hash Function Design. In: Davcev, D., Gómez, J.M. (eds) ICT Innovations 2009. ICT Innovations 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10781-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-10781-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10780-1
Online ISBN: 978-3-642-10781-8
eBook Packages: EngineeringEngineering (R0)