Abstract
All existing learning methods have particular bias that makes them suitable for specific kind of problems. Universal Learning Machine (ULM) should find the simplest data model for arbitrary data distributions. Several ways to create ULMs are outlined, and an algorithm based on creation of new global and local features combined with meta-learning is introduced. This algorithm is able to find simple solutions that sophisticated algorithms ignore, learn complex Boolean functions, complicated probability distributions, as well as the problems requiring multiresolution decision borders.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
Duch, W., Maszczyk, T.: Almost random projection machine. In: Alippi, C., et al. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 789–798. Springer, Heidelberg (2009)
Duch, W.: k-separability. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)
Duch, W., Grudziński, K.: Meta-learning: searching in the model space. In: Proceedings of the International Conference on Neural Information Processing, Shanghai, pp. 235–240 (2001)
Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization. In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, pp. 13–22. Springer-Physica Verlag, New York (2002)
Duda, R.O., Hart, P.E., Stork, D.: Patter Classification. J. Wiley & Sons, New York (2001)
Duch, W., Adamczak, R., Gra̧bczewski, K.: A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12, 277–306 (2001)
Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of data. Proceedings of the IEEE 92, 771–805 (2004)
Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)
Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining. In: Cognitive Technologies. Springer, Heidelberg (2009)
Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing Surveys 2, 163–213 (1999)
Duch, W., Jankowski, N.: Taxonomy of neural transfer functions. In: International Joint Conference on Neural Networks, Como, Italy, vol. III, pp. 477–484. IEEE Press, Los Alamitos (2000)
Duch, W.: Gra̧bczewski, K.: Heterogeneous adaptive systems. In: IEEE World Congress on Computational Intelligence, pp. 524–529. IEEE Press, Honolulu (2002)
Duch, W.: Towards comprehensive foundations of computational intelligence. In: Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence, vol. 63, pp. 261–316. Springer, Heidelberg (2007)
Duch, W., Itert, L.: Committees of undemocratic competent models. In: Rutkowski, L., Kacprzyk, J. (eds.) Proc. of Int. Conf. on Artificial Neural Networks (ICANN), Istanbul, pp. 33–36 (2003)
Grabczewski, K., Jankowski, N.: Versatile and efficient meta-learning architecture: Knowledge representation and management in computational intelligence. In: IEEE Symposium on Computational Intelligence in Data Mining, pp. 51–58. IEEE Press, Los Alamitos (2007)
Grabczewski, K., Jankowski, N.: Meta-learning with machine generators and complexity controlled exploration. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 545–555. Springer, Heidelberg (2008)
Duch, W.: Filter methods. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature extraction, foundations and applications, pp. 89–118. Springer-Physica Verlag, New York (2006)
Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks Based on Quality of Projected Clusters. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part II. LNCS, vol. 5164, pp. 754–762. Springer, Heidelberg (2008)
Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pattern completion using neural similarity based methods. Applied Mathematics and Computer Science 10, 101–120 (2000)
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Gra̧bczewski, K., Duch, W.: The separability of split value criterion. In: Proceedings of the 5th Conf. on Neural Networks and Soft Computing, Zakopane, Poland, Polish Neural Network Society, pp. 201–208 (2000)
Duch, W., Jankowski, N., Gra̧bczewski, K., Naud, A., Adamczak, R.: Ghostminer data mining software. Technical report, Department of Informatics, Nicolaus Copernicus University (2000-2008), http://www.fqspl.com.pl/ghostminer/
Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classification. Elis Horwood, London (1994)
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature extraction, foundations and applications. Springer-Physica Verlag, Heidelberg (2006)
Liu, H., Motoda, H.: Feature extraction, construction and selection: a data mining perspective. In: Liu, H., Motoda, H. (eds.) SECS, vol. 453. Kluwer Academic, Boston (1998) (Includes bibliographical references and index)
Pȩkalska, E., Duin, R.: The dissimilarity representation for pattern recognition: foundations and applications. World Scientific, Singapore (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duch, W., Maszczyk, T. (2009). Universal Learning Machines. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10684-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-10684-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10682-8
Online ISBN: 978-3-642-10684-2
eBook Packages: Computer ScienceComputer Science (R0)