Abstract
In this paper localized fractals are studied by using harmonic wavelets. It will be shown that, harmonic wavelets are orthogonal to the Fourier basis. Starting from this, a method is defined for the decomposition of a suitable signal into the periodic and localized parts. For a given signal, the denoising will be done by simply performing a projection into the wavelet space of approximation. It is also shown that due to their self similarity property, a good approximation of fractals can be obtained by a very few instances of the wavelet series. Moreover, the reconstruction is independent on scale as it should be according to the scale invariance of fractals.
Preliminary results presented at the International Conference on Computational Science and Applications (ICCSA 2008), June 30-July 3, 2008 Perugia (It) .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abry, P., Goncalves, P., Lévy-Véhel, J.: Lois d’éschelle, Fractales et ondelettes, Hermes (2002)
Borgnat, P., Flandrin, P.: On the chirp decomposition of Weierstrass-Mandelbrot functions, and their time-frequency interpretation. Applied and Computational Harmonic Analysis 15, 134–146 (2003)
Bunde, A., Havlin, S. (eds.): Fractals in Science. Springer, Berlin (1995)
Cattani, C.: Harmonic Wavelets towards Solution of Nonlinear PDE. Computers and Mathematics with Applications 50(8-9), 1191–1210 (2005)
Cattani, C.: Connection Coefficients of Shannon Wavelets. Mathematical Modelling and Analysis 11, 1–16 (2006)
Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Series on Advances in Mathematics for Applied Sciences, p. 74. World Scientific, Singapore (2007)
Cattani, C.: Wavelet extraction of a pulse from a periodic signal. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 1202–1211. Springer, Heidelberg (2008)
Cattani, C.: Shannon Wavelets Theory. Mathematical Problems in Engineering 2008, Article ID 164808, 24 pages (2008)
Cattani, C.: Harmonic Wavelet Approximation of Random, Fractal and High Frequency Signals. To appear on Telecommunication Systems (2009)
Cattani, C.: Harmonic Wavelet Analysis of a Localized Fractal. International Journal of Engineering and Interdisciplinary Mathematics (to appear, 2009)
Chui, C.K.: An Introduction to Wavelets. Academic Press, New York (1992)
Daubechies, I.: Ten Lectures on wavelets. SIAM, Philadelphia (1992)
Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor Function. Expositiones Mathematicae 24, 1–37 (2006)
Dutkay, D.E., Jorgensen, P.E.T.: Wavelets on Fractals. Rev. Mat. Iberoamericana 22(1), 131–180 (2006)
Falconer, K.: Fractal Geometry. John Wiley, New York (1977)
Feder, J.: Fractals. Pergamon, New York (1988)
Mallat, S.: A Wavelet tour of signal processing. Academic Press, London (1998)
Muniandy, S.V., Moroz, I.M.: Galerkin modelling of the Burgers equation using harmonic wavelets. Phys.Lett. A 235, 352–356 (1997)
Newland, D.E.: Harmonic wavelet analysis. Proc. R. Soc. Lond. A 443, 203–222 (1993)
Vicsek, T.: Fractal Growth Phenomenon. Word Scientific, Singapore (1989)
Weierstrass, K.: Über continuirliche Functionen eines reelles Arguments, die für keinen Werth des letzteren einen Bestimmten Differentialquotienten besitzen, König, Akad. der Wissenschaften, Berlin, July 18 (1872); Reprinted in: K. Weierstrass, Mathematische Werke II, pp. 71–74. Johnson, New York (1967)
Wornell, G.: Signal Processing with Fractals: A Wavelet-Based Approach. Prentice Hall, Englewood Cliffs (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Cattani, C. (2009). Wavelet Based Approach to Fractals and Fractal Signal Denoising . In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VI. Lecture Notes in Computer Science, vol 5730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10649-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-10649-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10648-4
Online ISBN: 978-3-642-10649-1
eBook Packages: Computer ScienceComputer Science (R0)