Wavelet Based Approach to Fractals and Fractal Signal Denoising | SpringerLink
Skip to main content

Wavelet Based Approach to Fractals and Fractal Signal Denoising

  • Chapter
Transactions on Computational Science VI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 5730))

  • 795 Accesses

Abstract

In this paper localized fractals are studied by using harmonic wavelets. It will be shown that, harmonic wavelets are orthogonal to the Fourier basis. Starting from this, a method is defined for the decomposition of a suitable signal into the periodic and localized parts. For a given signal, the denoising will be done by simply performing a projection into the wavelet space of approximation. It is also shown that due to their self similarity property, a good approximation of fractals can be obtained by a very few instances of the wavelet series. Moreover, the reconstruction is independent on scale as it should be according to the scale invariance of fractals.

Preliminary results presented at the International Conference on Computational Science and Applications (ICCSA 2008), June 30-July 3, 2008 Perugia (It) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abry, P., Goncalves, P., Lévy-Véhel, J.: Lois d’éschelle, Fractales et ondelettes, Hermes (2002)

    Google Scholar 

  2. Borgnat, P., Flandrin, P.: On the chirp decomposition of Weierstrass-Mandelbrot functions, and their time-frequency interpretation. Applied and Computational Harmonic Analysis 15, 134–146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bunde, A., Havlin, S. (eds.): Fractals in Science. Springer, Berlin (1995)

    Google Scholar 

  4. Cattani, C.: Harmonic Wavelets towards Solution of Nonlinear PDE. Computers and Mathematics with Applications 50(8-9), 1191–1210 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cattani, C.: Connection Coefficients of Shannon Wavelets. Mathematical Modelling and Analysis 11, 1–16 (2006)

    MathSciNet  Google Scholar 

  6. Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Series on Advances in Mathematics for Applied Sciences, p. 74. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  7. Cattani, C.: Wavelet extraction of a pulse from a periodic signal. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 1202–1211. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Cattani, C.: Shannon Wavelets Theory. Mathematical Problems in Engineering 2008, Article ID 164808, 24 pages (2008)

    Google Scholar 

  9. Cattani, C.: Harmonic Wavelet Approximation of Random, Fractal and High Frequency Signals. To appear on Telecommunication Systems (2009)

    Google Scholar 

  10. Cattani, C.: Harmonic Wavelet Analysis of a Localized Fractal. International Journal of Engineering and Interdisciplinary Mathematics (to appear, 2009)

    Google Scholar 

  11. Chui, C.K.: An Introduction to Wavelets. Academic Press, New York (1992)

    MATH  Google Scholar 

  12. Daubechies, I.: Ten Lectures on wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  13. Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor Function. Expositiones Mathematicae 24, 1–37 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dutkay, D.E., Jorgensen, P.E.T.: Wavelets on Fractals. Rev. Mat. Iberoamericana 22(1), 131–180 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Falconer, K.: Fractal Geometry. John Wiley, New York (1977)

    Google Scholar 

  16. Feder, J.: Fractals. Pergamon, New York (1988)

    MATH  Google Scholar 

  17. Mallat, S.: A Wavelet tour of signal processing. Academic Press, London (1998)

    MATH  Google Scholar 

  18. Muniandy, S.V., Moroz, I.M.: Galerkin modelling of the Burgers equation using harmonic wavelets. Phys.Lett. A 235, 352–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Newland, D.E.: Harmonic wavelet analysis. Proc. R. Soc. Lond. A 443, 203–222 (1993)

    Article  MATH  Google Scholar 

  20. Vicsek, T.: Fractal Growth Phenomenon. Word Scientific, Singapore (1989)

    Google Scholar 

  21. Weierstrass, K.: Über continuirliche Functionen eines reelles Arguments, die für keinen Werth des letzteren einen Bestimmten Differentialquotienten besitzen, König, Akad. der Wissenschaften, Berlin, July 18 (1872); Reprinted in: K. Weierstrass, Mathematische Werke II, pp. 71–74. Johnson, New York (1967)

    Google Scholar 

  22. Wornell, G.: Signal Processing with Fractals: A Wavelet-Based Approach. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cattani, C. (2009). Wavelet Based Approach to Fractals and Fractal Signal Denoising . In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VI. Lecture Notes in Computer Science, vol 5730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10649-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10649-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10648-4

  • Online ISBN: 978-3-642-10649-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics